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Uncertainty quantification

We consider a (numerical or experimental) model depending on a set of random
parameters X = (X1, . . . ,Xd) that describe the uncertainties on the model, and some
output variable of interest

Y = u(X ).

Forward problems: evaluation of statistics, probability of events, sensitivity indices...

E(h(Y )) = E(h ◦ u(X )) =

∫
h(u(x1, . . . , xd))p(x1, . . . , xd)dx1 . . . dxd

Inverse problems: from (partial) observations of Y , estimate the distribution µ of X

dµ(x1, . . . , xd)

Solving forward and inverse problems requires the evaluation of the model for many
instances of X .

This is usually unaffordable when one evaluation requires a costly numerical simulation
(or experiment).
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Approximation for uncertainty quantification

In practice, we rely on approximations of the map

X 7→ u(X )

used as predictive surrogate models (reduced order models, metamodels) which are easy
to operate with (evaluation, integration, derivation...).

This requires

approximation formats (model classes) that exploit some specific features of the
functions (e.g. regularity, low effective dimension, sparsity, low rank...), possibly
deduced from some knowledge on the model,

algorithms for constructing approximations from available information: samples
(black box), model’s equations (white or grey box)...
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Approximation for uncertainty quantification

An approximation Ỹ = ũ(X ) of Y = u(X ) can be directly used for obtaining
approximate solutions to forward and inverse problems, with a control of errors on
quantities of interest, e.g.

|E(Y )− E(Ỹ )| ≤
∫
|u(x)− ũ(x)|dµ(x) = ‖u − ũ‖L1

µ
,

but also to design variance reduction methods for Monte-Carlo methods, e.g. as a
control variate

E(Y ) ≈ E(Ỹ ) +
1
N

N∑
k=1

(u(Xk)− ũ(Xk)) := ÎN ,

E(|ÎN − E(Y )|2) = V(ÎN) ≤ 1
N
‖u − ũ‖2L2

µ
.
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Approximation

The goal is to approximate a function u from a space M by a function un from a subset
Mn (model class) described by n (or O(n)) parameters.

We distinguish linear approximation, where Mn are linear spaces, from nonlinear
approximation, where Mn are nonlinear sets.

The quality of an approximation un in Mn can be assessed by

d(u, un)

where d is a metric on M, and the quality of the model class is assessed by the best
approximation error

en(u)M = inf
v∈Mn

d(u, v)
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Approximation

Given a function u, and given a family of model classes (Mn)n≥1, fundamental problems
are to determine if and how fast en(u)M tends to 0, and to provide algorithms which
produce approximations un ∈ Mn such that

d(u, un) ≤ Cen(u)M

with C independent of n or C(n)en(u)M → 0 as n→∞.
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Worst-case and mean squared errors

For functions defined on a parameter space X (equipped with a measure µ) and with
values in some Banach space V , a classical setting is to consider functions from the
Bochner space

M = Lp
µ(X ;V ) = V ⊗ Lp

µ(X )

equipped with the metric
d(u, v) = ‖u − v‖Lpµ(X ;V ).

Two typical cases are p =∞ (worst-case setting),

‖u − v‖L∞µ (X ;V ) = ess sup
x∈X

‖u(x)− v(x)‖V

and p = 2 (mean-squared setting),

‖u − v‖2L2
µ(X ;V ) =

∫
X
‖u(x)− v(x)‖2V dµ(x) = E(‖u(X )− v(X )‖2V )

where X ∼ µ.

Noting that ‖u − v‖L2
µ(X ;V ) ≤ ‖u − v‖L∞µ (X ;V ), approximation results in L2 can be

deduced from stronger results in L∞.
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Model classes for vector-valued functions

For the approximation of a function u ∈ Lp
µ(X ;V ), typical model classes are

Mn = V ⊗ Sn, where Sn is a subspace of Lp
µ(X ) (e.g. polynomials, wavelets...),

which results in an approximation

un(x) =
n∑

i=1

viϕi (x)

with an explicit expression as a function of x .

Mn = Lp
µ(X ;Vn) = Vn ⊗ Lp

µ(X ), where Vn is a low-dimensional subspace of V ,
which results in an approximation

un(x) =
n∑

i=1

viϕi (x)

which is not explicit in terms of x .

When u(x) is solution of a parameter-dependent equation, the approximation
un(x) ∈ Vn is obtained by some projection of u(x) on Vn that exploits the
equations. This corresponds to projection-based model order reduction methods.

Anthony Nouy 8 / 59



Computing an approximation

An approximation un in a certain model class Mn can be obtained by

an interpolation of u at a set of points Γn.

For a vector space Mn = V ⊗ Sn and a set of points Γn ⊂ X unisolvent for Sn, the
interpolation un is such that

un(x) = u(x) ∀x ∈ Γn,

and
‖u − un‖Lp ≤ (1 + L(p)

n )en(u)Lp

where L
(p)
n is the norm of the interpolation operator from Lp

µ(X ) to Sn, which
depends on the quality of the set of points Γn for Sn.

For p =∞, L(∞)
n is the Lebesgue constant L(∞)

n = supx∈X
∑n

i=1 |`i (x)| where {`i}
is a basis of Sn with the interpolation property.
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Computing an approximation

A minimization of an empirical risk functional

min
v∈Mn

1
m

m∑
k=1

`(u(xk), v(xk)) ≈ min
v∈Mn

E(`(u(X ), v(X )))

where the xk are samples of X and the risk E(`(u(X ), v(X ))) provides some
“distance” d(u, v) between u and v .

A better performance can be obtained by solving

min
v∈Mn

1
m

m∑
k=1

wk`(u(xk), v(xk))

where the xk are samples in X drawn from a suitable distribution
dν(x) = ρ(x)dµ(x) on X , and the weights wk = ρ(xk)−1.
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Computing an approximation

a (weighted) least-squares projection of u ∈ L2
µ(X ;V ), which is solution of

min
v∈Mn

1
m

m∑
k=1

ρ(xk)−1‖u(xk)− v(xk)‖2V

where the xk are samples in X drawn from a certain distribution
dν(x) = ρ(x)dµ(x) on X .

For Mn = V ⊗ Sn with Sn a n-dimensional subspace of L2
µ(X ) with orthonormal

basis {ϕi}ni=1, the quality of the least-squares projection depends on how far the
empirical Gram matrix

Gij =
1
m

m∑
k=1

wkϕi (xk)ϕj(xk)

is from identity.

An optimal weighted least-squares method [Cohen and Migliorati 2017] is obtained
with ρ(x) = 1

n

∑n
i=1 ϕi (x)2. Then for m ≥ nε−2 log(2nη−1), this ensures that

P(‖G − I‖ > ε) ≤ η and (in particular)

E(‖u − un‖2L2) ≤ Cen(u)2
L2 + ‖u‖2η, with C = 1 +

1
1− ε

n

m
.
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Computing an approximation

Given the model’s equations

A(x)u(x) = f (x), with A(x) : V →W , f (x) ∈W

an approximation un can be obtained through a Galerkin projection1 of u, e.g.
defined by

min
v∈Mn

∫
X
‖A(x)v(x)− f (x)‖2W dµ(x) or min

v∈Mn

sup
x∈X
‖A(x)v(x)− f (x)‖W

If A(x) is a linear operator such that α‖v‖V ≤ ‖A(x)v‖W ≤ β‖v‖V , then

‖u − un‖Lpµ(X ;V ) ≤
β

α
inf

v∈Mn

‖u − v‖Lpµ(X ;V )

1coined stochastic Galerkin projection
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Polynomial approximation
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Polynomial approximation

Polynomial spaces

Let X = X1 × . . .×Xd ⊂ Rd .

For each dimension k, we consider a family of univariate polynomials {ψk
n}n≥0 with

ψk
n ∈ Pn(Xk).

Then we define the tensorised basis

ψα(x) = ψ1
α1(x1) . . . ψd

αd
(xd)

where α is a multi-index in Nd .

For a set Λ ⊂ Nd , we consider the space of polynomials

PΛ(X ) = span {ψα(x) : α ∈ Λ}

In general, the polynomial space PΛ(X ) depends on the chosen univariate polynomial
bases, except for downward closed sets Λ such that

α ∈ Λ and β ≤ α ⇒ β ∈ Λ
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Polynomial approximation

Polynomial interpolation

Let Γk = (tki )i≥0 be a sequence of points in Xk such that the set (tki )ni=0 is unisolvent
for Pn(Xk), which means that for any a ∈ Rn+1, there exists a unique polynomial
v ∈ Pn(Xk) such that

v(tki ) = ai for all 0 ≤ i ≤ n,

therefore allowing to define the interpolation operator Ikn : RXk → Pn(Xk).

Then for any downward closed set Λ ⊂ Nd , the set

ΓΛ = {tα = (t1α1 , . . . , t
d
αd

) : α ∈ Λ}

is unisolvent for PΛ(X ), that uniquely defines an interpolation operator (oblique
projection)

IΛ : RX → PΛ(X )

whose norm can be bounded using upper bounds of the norm of one-dimensional
interpolation operators.
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Polynomial approximation

Orthogonal polynomials

When using least-squares or Galerkin projections methods in L2
µ(X ), the use of

orthonormal bases improves properties of numerical methods.

Let consider a product measure µ = µ1 ⊗ . . .⊗ µd with support X = X1 × . . .×Xd .
Let {ψk

n}n≥0 be an orthonormal polynomial basis in L2
µk

(Xk), with

ψk
n ∈ Pn(Xk)

such that ∫
Xk

ψk
n (xk)ψk

m(xk)dµk(xk) = δnm

Then the tensorized polynomial basis {ψα(x) = ψ1
α1(x1) . . . ψd

αd
(xd)}α∈Nd constitutes

an orthonormal basis of L2
µ(X ).

Classical examples of univariate orthonormal polynomials are

Legendre polynomials for µk ∼ U(−1, 1),

Hermite polynomials for µk ∼ N (0, 1)
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Polynomial approximation

Polynomial approximations

Consider X = [−1, 1]d ⊂ Rd and the space PΛ(X ) of polynomials with partial degree
bounded by p, where

Λ = {α : max
k
αk ≤ p}.

with dimension n = #Λ = (p + 1)d .

Assume that u : X → V is analytic and can be analytically extended to{
z ∈ Cd : |zk | ≤ τ

}
⊃ X , then

en(u)L∞(X ) . e−cτ n
1/d

The convergence rate deteriorates with the dimension d (curse of dimensionality).

The key for circumventing the curse of dimensionality is to exploit some sparsity.
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Polynomial approximation

Sparse polynomial spaces

Polynomials with bounded total degree

Λ = {α :
∑

k αk ≤ p} with #Λ = (d+p)!
d!p!

Hyperbolic cross sets

Λ = {α :
∏

k(αk + 1) ≤ p} with #Λ ≈ p log(1 + p)d
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Polynomial approximation

Sparse polynomial spaces

Additive polynomial functions: for

Λ = {α : max
k
αk ≤ p and #{k : αk 6= 0} ≤ 1}

the space PΛ(X ) corresponds to additive functions

d∑
i=1

ui (xi )

with univariate polynomial functions ui of degree p.

Polynomial functions with low-order interactions: for

Λ = {α : max
k
αk ≤ p and #{k : αk 6= 0} ≤ m}

the space PΛ(X ) corresponds to functions with interactions of order m

d∑
i1,...,im

ui1,...,im (xi1 , . . . , xim )

with m-variate polynomial functions ui1,...,im of degree p.
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Sparse approximation
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Sparse approximation

Best n-term approximation

Let u ∈ M = Lp
µ(X ;V ) and let {ψα}α∈F be a basis of Lp

µ(X ), such that

u(x) =
∑
α∈F

uαψα(x).

For a subset Λ ⊂ F , let

MΛ =

{
v(x) =

∑
α∈Λ

vαψα(x) : vα ∈ V

}
.

Then we consider the nonlinear model class

Mn = {v ∈ MΛ : Λ ⊂ F ,#Λ = n} =
⋃

#Λ=n

MΛ

of functions that admit a representation with at most n non zero coefficients in the
basis {ψα}α∈F .
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Sparse approximation

Best n-term approximation

A best approximation of u in Mn is called a best n-term approximation of u relatively to
the given basis.

A best n-term approximation un is solution of

min
v∈Mn

‖u − v‖Lpµ(X ;V ) = min
#Λ=n

min
v∈MΛ

‖u − v‖Lpµ(X ;V ) := en(u)Lp

where the minimum is taken over all subsets Λ with cardinal n.

This notion can be extended to more general dictionaries of functions.
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Sparse approximation

Best n-term approximation

Assuming that the functions ψα are normalized in Lp
µ(X ),

min
v∈MΛ

‖u − v‖Lpµ(X ;V ) ≤ ‖
∑
α/∈Λ

uαψα‖Lpµ(X ;V ) ≤
∑
α/∈Λ

‖uα‖V .

Therefore, by choosing a set Λn corresponding to the n-largest terms ‖uα‖V , we obtain
a bound of the best n-term approximation error

en(u)Lp ≤
∑
α/∈Λn

‖uα‖V

If the sequence c = (‖uα‖V )α ∈ `r with r < 1, Stechkin’s lemma yields

en(u)Lp ≤ Cn−s , s =
1
r
− 1

with C = ‖c‖`r = (
∑
α |cα|

r )1/r .
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Sparse approximation

Best n-term approximation

Assuming that {ψα} is an orthonormal basis in L2
µ(X ),

min
v∈MΛ

‖u − v‖2L2
µ(X ;V ) = ‖

∑
α/∈Λ

uαψα‖2L2
µ(X ;V ) =

∑
α/∈Λ

‖uα‖2V .

Therefore, by choosing a set Λn corresponding to the n-largest terms ‖uα‖V , we obtain
the best n-term approximation error

en(u)2
L2 =

∑
α/∈Λn

‖uα‖2V

If the sequence c = (‖uα‖V )α ∈ `r with r < 1, Stechkin’s lemma yields

en(u)L2 ≤ Cn−s , s =
1
r
− 1

2

with C = ‖c‖1/2
`r/2

.
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Sparse approximation

Parameter-dependent equations

Consider the parameter-dependent equation

−∇ · (a(x)∇u(x)) = f in D ⊂ Rm, u(x) = 0 on ∂D,

with the uniform ellipticity assumption 0 < γ ≤ a(x) ≤ β <∞, and a particular
parametrization

a(x) = a0 +
d∑

i=1

aixi , x ∈ X = [−1, 1]d , d ∈ N ∪ {+∞}

Consider the Taylor expansion of u at 0

u(x) =
∑
α∈F

uαx
α, uα =

1
α!
∂αu(0).
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Sparse approximation

Parameter-dependent equations

Bounds of ‖uα‖V can be obtained by complex analysis.

The solution admits an analytic extension to the complex domain (polydisc)
{z ∈ Cd : |zk | ≤ 1}.

If ρ = (ρi )i≥1 is any sequence such that∑
i≥1

ρi |ai | ≤ a0 − ζ

for some 0 < ζ < γ, the solution admits an analytic extension u(z) to an even larger
complex domain (polydisc)

{z ∈ Cd : |zk | ≤ ρk}, ρk > 1,

and
‖uα‖V ≤ δ(α), δ(α) = Cζ

∏
i≥1

ρ−αi
i
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Sparse approximation

Parameter-dependent equations

Assuming that (‖ai‖L∞(D))i≥1 ∈ `r , we can design a sequence ρ such that
(δ(α))α∈F ∈ `r .

Therefore if (‖ai‖L∞(D))i≥1 ∈ `r for some r < 1, then (‖uα‖V )α∈F ∈ `r and the best
n-term approximation in the canonical basis {xα}α is such that

en(u)L∞ ≤ Cn−s , s =
1
r
− 1

We observe an algebraic convergence rate independent of the number of parameters,
possibly infinite !

This result is still valid in the more general case of parameter-dependent operator
equations

A(x)u(x) = f

where A(x) : V →W is such that A(x) = A0 +
∑m

i=1 Aixi and (‖Ai‖W←V )i≥1 ∈ `r .

The same performances are obtained by imposing to the sets Λ to be downward closed.
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Sparse approximation

More general parameter-dependent equations

For different types of models (different parametrizations, nonlinearity), the solution may
not admit an analytic extension to a complex polydisc containing X , so that Taylor
expansion may not converge.

However, by using a Legendre polynomial basis (or rescaled Legendre basis), it is
possible to exploit the fact that the solution admits an analytic extension on a smaller
complex domain (contained in a polyellipse).

Anthony Nouy 29 / 59



Sparse approximation

Index sets based on estimates of coefficients

Assuming that we know an upper bound of the coefficients,

‖uα‖V ≤ δ(α) (1)

a subset Λδn is obtained by retaining the n largest values δ(α). The resulting set is close
to optimal if the bound (1) is sharp.

Upper bounds δ(α) can be obtained based on a priori analysis (a priori definition of the
sequence Λδn) or based on a posteriori analysis (adaptive construction).

Assuming that there exists γ ≥ 1 such that

γ−1δ(α) ≤ ‖uα‖V ≤ δ(α),

we have

‖u − uΛδn
‖2L2
µ(X ;V ) =

∑
α/∈Λδn

‖uα‖2V ≤
∑
α/∈Λδn

δ(α)2 = min
#Λn=n

∑
α/∈Λn

δ(α)2 ≤ γ2 min
#Λn=n

∑
α/∈Λn

‖uα‖2V

and therefore
‖u − uΛδn

‖L2
µ(X ;V ) ≤ γen(u)L2 (quasi-optimality)
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Sparse approximation

Index sets based on estimates of coefficients

In practice, we can define a sequence of subsets

Λp = {α : δ(α) ≥ ε(p)}
with (ε(p))p≥0 a decreasing sequence.

Assume that
‖uα‖V ≤ C

∏
k

ρk
−αk = e−

∑
k ωkαk := δ(α)

Taking ε(p) = Ce−p, we obtain

Λp =

{
α :
∑
k

ωkαk ≤ p

}
which corresponds to polynomials with bounded weighted total degree.
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Sparse approximation

Index sets based on estimates of coefficients

Assume that
‖uα‖V ≤ C

∏
k

(1 + αk)−ωk := δ(α)

Taking ε(p) = Cp−1, we obtain

Λp =

{
α :
∏
k

(1 + αk)ωk ≤ p

}

which is an anisotropic hyperbolic cross set.
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Sparse approximation

Adaptive constructions of index sets

Adaptive algorithms for sparse approximation construct an increasing sequence of
subsets (Λn)n≥1 in F and a sequence of approximations un ∈ MΛn computed through
interpolation, regression or other projection methods.

The sequence of subsets is defined by

Λn = Λn−1 ∪ An

where An is a subset of a candidate set Nn.

The definition of Nn requires a strategy for the exploration of the set F .

The definition of An requires a selection strategy, usually based on error estimates.
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Sparse approximation

Adaptive constructions of index sets

For a given downward closed set Λ, a natural neighborhood is given by the margin of Λ

M(Λ) = {α ∈ F \ Λ : ∃β ∈ Λ s.t. ‖α− β‖1 = 1}

or the reduced margin of Λ

Mr (Λ) = {α ∈ F \ Λ : α− ek ∈ Λ for all k s.t. αk > 1}

a set Λ and its marginM(Λ) a set Λ and its reduced marginMr (Λ)

For a downward closed set Λ, an interesting property of the reduced marginMr (Λ) is
that for any subset A ⊂Mr (Λ), Λ ∪ A is downward closed.
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Projection based model reduction
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Projection based model reduction

Parameter-dependent equations

We consider the case of models described by parameter-dependent equations

F(u(x); x) = 0, x ∈ X ,

where the solution u(x) is in a high-dimensional space V (e.g. a finite element
approximation space for PDEs).

The complexity limits the number of evaluations of u(x).

However, for many problems, the solution manifold

M = {u(x) : x ∈ X}

has a low effective dimension, i.e. it can be well approximated by a low dimensional
subspace Vn of V .
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Projection based model reduction

Parameter-dependent equations

This is exploited by projection-based model reduction methods that consist in projecting
the solution u(x) in a suitable subspace Vn, which results in an approximation

un(x) =
n∑

i=1

viϕi (x)

where the vi ∈ V form a basis of Vn, and ϕi : X → R.

This can be interpreted as a rank-n approximation of u, seen as an element of V ⊗ RX .

For u ∈ Lp
µ(X ;V ), this is equivalent to consider model classes

Mn = Lp
µ(X ;Vn) = Vn ⊗ Lp

µ(X ).
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Projection based model reduction

Measuring the quality of subspaces

Consider a Banach space V equipped with a norm ‖ · ‖V .

For a given instance x ∈ X , the quality of a subspace Vn is measured through the best
approximation error

d(u(x),Vn) = inf
v∈Vn

‖u(x)− v‖V

When we are interested in controlling the worst-case error, the map u is seen as an
element of L∞(X ;V ) and the quality of Vn is measured by

inf
v∈L∞(X ;Vn)

‖u − v‖L∞(X ;V ) = sup
x∈X

d(u(x),Vn) = sup
f∈M

d(f ,Vn)

When X is equipped with a measure and we are interesting in controlling a
mean-squared error, the map is seen as an element of L2

µ(X ;V ) and the quality of Vn is
measured by

inf
v∈L2

µ(X ;Vn)
‖u − v‖2L2(X ;V ) =

∫
X
d(u(x),Vn)2dµ(x) =

∫
M

d(f ,Vn)2dν(f )

where ν = u#µ is the push-forward measure of µ through the solution map u.
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Projection based model reduction

Optimal subspaces in the worst case setting

Optimal spaces Vn for the worst-case error are solution of

inf
dim(Vn)=n

inf
v∈L∞(X ;Vn)

‖u − v‖L∞(X ;V ) = inf
dim(Vn)=n

sup
f∈M

d(f ,Vn) := dn(M)V

dn(M)V is the Kolmogorov n-width of the setM in V which measures how wellM
can be approximated by n-dimensional subspaces.

It quantifies the ideal performance of linear approximation methods since for any
approximation of u of the form un(x) =

∑n
i=1 viϕi (x),

‖u − un‖L∞(X ;V ) ≥ dn(M)V .

Upper bounds for dn(M)V can be obtained by constructing particular approximations
un(x) (e.g. polynomial approximations)
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Projection based model reduction

Optimal subspaces in the mean-squared setting

Optimal spaces Vn in the mean-squared sense are solution of

inf
dim(Vn)=n

inf
v∈L2

µ(X ;Vn)
‖u − v‖2L2

µ(X ;V ) = inf
dim(Vn)=n

∫
X
d(u(x),Vn)2dµ(x) := en(u)2

L2

en(u)L2 is another notion of linear n-width of the manifoldM equipped with the
measure ν = u#µ.

If V is a Hilbert space and µ is a probability measure,

en(u)2
L2 = inf

dim(Vn)=n

∫
X
‖u(x)− PVnu(x)‖2V dµ(x) = inf

dim(Vn)=n
E(‖u(X )− PVnu(X )‖2V )

and optimal spaces Vn are the n-dimensional principal subspaces of the V -valued
random variable u(X ).

This corresponds to principal component analysis and the optimal approximation
un(x) = PVnu(x) is the truncated Karhunen-Loeve decomposition of u(X ).
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Projection based model reduction

n-widths for parameter-dependent equations

Consider the parameter-dependent equation

−∇ · (a(x)∇u(x)) = f in D ⊂ Rm, u(x) = 0 on ∂D,

with the assumption 0 < γ ≤ a(x) ≤ β <∞, ∀x ∈ X .

The problem admits a unique solution u(x) ∈ H1
0 (D) = V and ‖u(x)‖V ≤ 1

γ
‖f ‖H−1(D).

Therefore the solution manifoldM is a bounded subset of V . This says nothing about
the convergence of dn(M)V .

If f ∈ Hs−1(D), a(x) ∈ C s(D) and D is sufficiently regular, thenM is a bounded
subset of Hs+1(D), therefore compact in V when s ≥ 1, and

dn(M)V . n−s/m.

This performance is achieved by generic approximation spaces Vn such as splines on
uniform meshes.

Finer assumptions are required to reveal an interest of projection-based model reduction
methods.
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Projection based model reduction

n-widths for parameter-dependent equations

Consider a particular parametrization

a(x) = a0 +
d∑

i=1

aixi , xi ∈ [−1, 1].

From results on best n-term approximations using polynomial bases, we obtain bounds
on the n-widths ofM.

If d <∞, we have an exponential convergence of dn(M)V , with a deterioration of the
convergence rate when m increases.

If d =∞ and (‖ai‖∞)i≥1 ∈ `r for some r < 1, then

dn(M)V . n−s , s =
1
r
− 1.
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Projection based model reduction

n-widths for parameter-dependent equations

More general results have been obtained for parameter-dependent equations

F(u(a); a) = 0, u(a) ∈ V ,

where a belongs to some compact set A of a complex Banach space A (e.g. L∞(D)).

If u : a ∈ A 7→ u(a) ∈M is holomorphic, then

dn(A)A . n−s ⇒ dn(M)V . n−r with r < s − 1.

For details, see [Cohen & DeVore 2015].
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Projection based model reduction

Practical construction of subspaces in the mean-squared setting

Optimal subspaces Vn are usually out of reach but suboptimal constructions can be
proposed.

In the mean-squared setting, Empirical Principal Component Analysis (or Proper
Orthogonal Decomposition) defines subspaces Vn as solutions of

min
dim(Vn)=n

1
m

m∑
i=1

‖u(x i )− PVnu(x i )‖2V

where u(x i ) are samples of u(X ). The resulting spaces Vn are nested subspaces
contained in span{u(x1), . . . , u(xm)}.

Proper Generalized Decomposition (or Generalized Spectral Decomposition) defines
spaces Vn solution of

min
dim(Vn)=n

inf
v∈L2

µ(X ;Vn)

∫
X

∆(u(x), v(x))µ(dx).

Assuming that ∆(u, v) ∼ ‖u − v‖2V , the resulting spaces Vn are such that

E(‖u(X )− PVnu(X )‖2V ) . en(u)2
L2 .

Constructive algorithms are obtained by imposing a nestedness property Vn ⊃ Vn−1.
See [Nouy 2017].
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Projection based model reduction

Practical construction of subspaces in the worst-case setting

In the worst-case setting, a greedy algorithm defines spaces

Vn = span{u(x1), . . . , u(xn)}

with adaptively chosen samples

xn+1 = argmax
x∈X
‖u(x)− PVnu(x)‖V .

The quality of Vn is assessed by

σn = sup
f∈M
‖f − PVn f ‖V

If dn(M)V . n−s , then σn . n−s .

If dn(M)V . e−anα , then σn . e−bnα .

See [DeVore et al 2013]
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Projection based model reduction

Practical construction of subspaces in the worst-case setting

In practice, samples are chosen such that

xn+1 = arg max
x∈XN

∆(u(x), un(x))

where XN is a discrete (training) set in X , un(x) is some projection of u(x) onto Vn

(typically a Galerkin projection) and ∆(u(x), un(x)) is an estimator of ‖u(x)− un(x)‖.
This is the basic idea of reduced basis methods.

An algorithm using a random selection of training sets XN is analyzed in
[Cohen et al 2018].

Any projection un(x) of u(x) onto Vn = span{u(x1), . . . , u(xn)} interpolates the
solution map u at points {x1, . . . , xn}.

For parameter-dependent equations A(x)u(x) = f (x) with A(x) : V →W , a Galerkin
projection can be defined by

un(x) = arg min
v∈Vn

‖A(x)v − f (x)‖W .

If A(x) is linear and A(x) and f (x) depend polynomially in x , un(x) is a rational
interpolation of u(x).
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(Other) model classes for high-dimensional approximation
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3 Projection based model reduction
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(Other) model classes for high-dimensional approximation

Model classes for high-dimensional approximation

Standard model classes include

Linear models
a1x1 + . . .+ adxd

Polynomial models ∑
α∈Λ

aαx
α

where Λ ⊂ Nd is a set of multi-indices, either fixed (linear approximation) or free
(nonlinear approximation).

Other model classes include

More general expansions
n∑

i=1

aiψi (x)

where the ψi are either fixed (linear approximation) or freely selected in a
dictionary of functions (nonlinear approximation).
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(Other) model classes for high-dimensional approximation

Model classes for high-dimensional approximation

Additive models
u1(x1) + . . .+ ud(xd)

or more generally ∑
α⊂T

uα(xα)

where T ⊂ 2{1,...,d} is either fixed (linear approximation) or a free parameter
(nonlinear approximation).

Multiplicative models
u1(x1) . . . ud(xd)

or more generally ∏
α∈T

uα(xα)

where T ⊂ 2{1,...,d} is either a fixed or a free parameter.
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(Other) model classes for high-dimensional approximation

Composition of functions

f (g(x)) = f (g1(x), . . . , gm(x))

with g is a map from Rd to Rm and f : Rm → R has a low-dimensional parametrization.

Linear transformations (ridge functions)

f (Wx), W ∈ Rm×d

A typical example is the perceptron

f (y) = aσ(wT x + b)

For large m, requires specific models for f , e.g.

f (g1(x), . . . , gm(x)) = f1(g1(x)) + . . .+ fm(gm(x))

A sum of m perceptrons is a shallow neural network (with one hidden layer of
width m)

m∑
i=1

aiσ(wi
T x + bi )
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(Other) model classes for high-dimensional approximation

More compositions... deep neural networks

gL ◦ gL−1 ◦ . . . ◦ g2 ◦ g1(x)

Deep convolutional networks

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Deep recurrent networks

f1,2,3,4 (f1,2,3 (f1,2 (f1(x1), f2(x2)) , f3(x3)) , f4(x4))

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}
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(Other) model classes for high-dimensional approximation

Low rank tensor formats

A multivariate function v(x1, . . . , xd) is identified with an an element of a tensor
product space

H1 ⊗ . . .⊗Hd

where Hν is a vector space of functions of the variable xν .

Function with rank one (elementary tensor)

v(x) = u1(x1) . . . ud(xd)

Function with canonical rank r

v(x) =
r∑

k=1

uk
1(x1) . . . uk

d (xd)
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(Other) model classes for high-dimensional approximation

Low rank tensor formats

For a subset of variables α ⊂ {1, . . . , d} := D, v(x) can be identified with a
bivariate function

v(xα, xαc ),

where xα and xαc are complementary groups of variables. The canonical rank of
this bivariate function is called the α-rank of v , denoted rankα(v), which is the
minimal integer rα such that

v(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )

For T ⊂ 2D a collection of subsets of D, a tensor format is defined by

T T
r = {v : rankα(v) ≤ rα, α ∈ T}

Tree-based formats correspond to a tree-structured T .

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Tucker format

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Hierarchical Tucker

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Tensor Train formatAnthony Nouy 53 / 59



(Other) model classes for high-dimensional approximation

Tree-based tensor formats as deep networks

A tensor v in T T
r admits a parametrization with parameters {fα}α∈T forming a

tree network of low dimensional multilinear functions (tensors).

f1,2,3,4,5

f1,2,3

f1 f2,3

f2 f3

f4,5

f4 f5

v(x) = f1,2,3,4,5 (f1,2,3 (f1(x1), f2,3(f2(x2), f3(x3)) , f4,5 (f4(x4), f5(x5)))

where for 1 ≤ ν ≤ d , fν : Xν → Rrν , and for any node α with children β1...βs ,

fα : Rrβ1 × ...× Rrβs → Rrα

is a multilinear function, which is identified with a tensor in Rrα×rβ1 ...×rβs .
Corresponds to a deep network with particular architecture and multilinear
functions.
Very specific structure allowing the design of stable algorithms for constructing
approximations in this format.
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(Other) model classes for high-dimensional approximation

Conclusions

A lot remains to be done for nonlinear approximation tools:

characterize classes of functions for which these approximation tools achieve a
certain performance (e.g. algebraic or exponential rates of convergence).

find problems sthat involve these classes of functions,

provide algorithms (interpolation, regression, Galerkin...) that achieve (almost) the
ideal performance.
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