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Motivation

Linear algebra is at the core of of scientific computing, statistics, data analysis, artificial
intelligence...

For large scale numerical or statistical models or problems involving big data sets,
classical linear algebra methods require elementary algebraic operations on matrices and
large vectors (norm, dot product, matrix-vector product, matrix-matrix product), the
complexity of which being often prohibitive.
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Motivation

Randomized linear algebra aims at

reducing the complexity of algorithms,

improving stability,

taking into account computational constraints (data not available from RAM,
streamed data),

or fully exploiting modern computational architectures (parallel computing, cloud
computing).

The idea is to project vectors or matrices onto low dimensional spaces and perform
algebraic operations there.

Random embeddings allow to perform algebraic operations with guaranteed precision
with high probability.
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Estimation of the euclidian norm

A fundamental problem is the estimation of the euclidian norm ‖x‖2 of a vector x ∈ Rn,

‖x‖2 =

(
n∑

j=1

x2
j

)1/2

,

by the euclidian norm
‖Sx‖2

of a vecteur Sx ∈ Rk of dimension k � n.
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Estimation of the euclidian norm

This will allow to understand other classical algebraic operations such as
the inner product between two vectors x et y ,

(x , y) =
1
4
(
‖x + y‖22 − ‖x − y‖22

)
,

the product of a matrix A ∈ Rm×n by a vector x ∈ Rn

(Ax)i = (ai , x)

where ai ∈ Rn is the i-th row of A,
the product of two matrices A ∈ Rm×n and B ∈ Rn×p

(AB)ij = (ai , b
j)

where bj ∈ Rn is the j-th column of B,
norms of a matrix A ∈ Rm×n

‖A‖2F =
m∑
i=1

‖ai‖22, ‖A‖2 = max
‖v‖2=1

‖Av‖2 = σ1(A), ...

but also more complex operations such as factorizations of matrices (singular value
decomposition, QR factorization...).
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Estimation of the euclidian norm

We would like S to be a quasi-isometry from Rn to Rk , i.e.

(1− ε)‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ε)‖x‖2

for some ε > 0.

This can not be satisfied for all x unless k ≥ n.

But using for S a random matrix with a well chosen distribution, we can expect

P((1− ε)‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ε)‖x‖2) ≥ 1− δ

for all x and a high probability 1− δ.
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Outline

1 Random embeddings

2 Random embeddings of subsets of vectors

3 Random embeddings with good computational properties
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Random embeddings

Consider a random matrix S ∈ Rk×n of the form

S =
1√
k
B

where B is a random matrix.

For x in Rn, letting v = x
‖x‖2 , we have

‖Sx‖22
‖x‖22

=
1
k

k∑
i=1

(
n∑

j=1

Bijvj)
2 :=

1
k

k∑
i=1

Yi

where

Yi = (
n∑

j=1

Bijvj)
2.

If the matrix B has i.i.d. rows such that E(BijBil) = δjl , then the Yi are i.i.d. and such
that

E(Yi ) =
∑
j,l

E(BijBil)vjvl =
∑
j

v2
j = ‖v‖22 = 1

and 1
k

∑
i=1 Yi converges almost surely to 1.
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Concentration inequality

Non asymptotic results can be obtained by analyzing how fast the distribution of
1
k

∑k
i=1 Yi concentrates around E(Y1).

Assuming the concentration inequality

P(| 1
k

k∑
i=1

Yi − E(Y1)| > ε) ≤ η(k, ε)

and denoting by
k(ε, δ) = min{k : η(k, ε) ≤ δ},

we guarantee

P(| 1
k

k∑
i=1

Yi − E(Y1)| > ε) = P(| ‖Sx‖
2
2

‖x‖22
− 1| > ε) ≤ δ

under the condition
k ≥ k(ε, δ).

If η(k, ε) decays sufficiently fast with k, we can satisfy the quasi-isometry property with a
high probability 1− δ for moderate k.
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Random matrices with sub-gaussian entries

Consider B with i.i.d. entries with zero mean and variance 1, so that

E(Yi ) = V(
n∑

j=1

Bijvj) =
n∑

j=1

v2
j = 1.

If we further assume that Bij follows a sub-gaussian distribution SG(γ2), then

n∑
j=1

Bijvj ∼ SG(γ2
n∑

j=1

v2
j ) = SG(γ2)

and for ε ≤ γ2,

P(| 1
k

k∑
i=1

Yi − E(Y1)| > ε) ≤ 2e−
kε2
8γ4

which gives
k(ε, η) = 8γ4ε−2 log(2δ−1),

a condition independent of n and logarithmic in δ−1. This allows to attain a very small
probability δ with a moderate k.

Note that the normal distribution N (0, 1) is SG(1).
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Embeddings of subsets of vectors

We would like that the quasi-isometry property is satisfied simultaneously for all vectors
in a subset Σ of Rn, with high probability, i.e.

(1− ε)‖x‖22 ≤ ‖Sx‖22 ≤ (1 + ε)‖x‖22 ∀x ∈ Σ, (1)

with high probability.

Assume that S ∈ Rk×n is such that

k ≥ k(ε, δ) implies P(

∣∣∣∣‖Sx‖22‖x‖2
− 1
∣∣∣∣ > ε) ≤ δ ∀x . (2)

If Σ is a finite set and
k ≥ k(ε, δ#Σ−1),

then

P(∃x ∈ Σ s.t.

∣∣∣∣‖Sx‖22‖x‖2
− 1
∣∣∣∣ > ε) ≤ δ
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Random embedding of non finite subsets

The set
K = { x

‖x‖2
: x ∈ Σ}

being compact, it can be covered by a finite union of balls. Satisfying a quasi-isometry
property for the centers of the balls is sufficient for obtaining a quasi-isometry property
for all vectors in K .

Denoting by Nε(K) the covering number of K (the minimal number of balls of radius ε
for covering K), we have that

P((1− ε)‖x‖22 ≤ ‖Sx‖22 ≤ (1 + ε)‖x‖22 ∀x ∈ Σ) ≤ δ

under the condition
k ≥ k(

ε

4
, δNε/4(K)−1)

Assuming k(ε, δ) = Cε−2 log(Dδ−1), then the condition is

k ≥ 16Cε−2(log(Dδ−1) + logNε/4(K)).
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Random embeddings of subspaces

For Vm a subspace of dimension m, K = {x ∈ Vm : ‖x‖2 = 1} is such that

Nε(K) ≤ (1 +
2
ε

)m,

and the condition becomes

k ≥ 16Cε−2(log(Dδ−1) + m log(9ε−1)).

This result can be improved by better exploiting the geometry of the unit sphere.
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Random embeddings with good computational properties

In practice, it is interesting to construct random matrices S with good computational
properties: reduced storage, efficient matrix-vector multiplication...
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Random matrices with discrete distributions

Consider
S =

1√
k
B

Choosing a matrix B whose entries are i.i.d. Rademacher random variables,

Bij =

{
1 with probability 1/2
−1 with probability 1/2

yields a reduced storage and applying B to a vector only requires changes of signs
and additions.

Choosing a matrix B whose entries are i.i.d. and such that

Bij =


√
r with probability 1

2r

0 with probability 1− 1
r

−
√
r with probability 1

2r

(3)

yields a sparse matrix whose average sparsity ratio 1
r
. The r.v. Bij defined by (3) has

zero mean, unit variance and Bij ∈ SG(r).
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Subsampling

An sparser matrix can be defined by

Sij =

√
n

k
δJi ,j (4)

where the Ji are i.i.d. and uniformly distributed over {1, . . . , n}.

The entries of S are not independent but the rows are independent. The row i contains
±
√

n
k
in the column Ji drawn randomly and 0 in the other columns.

S =

√
n

k


1

1
−1

−1
1


Then

‖Sx‖22
‖x‖22

=
1
k

k∑
i=1

Yi

where the Yi are independent and
Yi = nv2

Ji ,

such that E(Yi ) = 1.
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Subsampling

Since Yi is bounded by n‖v‖2∞, we obtain from Bernstein inequality that

P(| 1
k

k∑
i=1

Yi − 1| > ε) ≤ 2e
− kε2

2(1+ε)(n‖v‖2∞−1)

so that

P(| ‖Sx‖
2
2

‖x‖22
− 1| > ε) ≤ δ

provided
k ≥ k(ε, δ) = 2(1 + ε) log(2δ−1)ε−2(n‖v‖2∞ − 1) (5)

For all v , ‖v‖∞ ≤ ‖v‖2 = 1 but the condition (5) makes the sampling approach
useless compared to a classical approach.

For (homogeneous) vectors with components of equal magnitude, |vj | = 1√
n
for all j

and Yi = 1, so that ‖Sx‖22 = ‖x‖22 almost surely.

For vectors such that
√
n‖v‖∞ ≤ β (with β ≥ 1), a sufficient condition is

k ≥ k(ε, δ) ≤ 2(1 + ε) log(2δ−1)ε−2β2,

which is independent of n.
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Subsampling

For sparse vectors (or with very heterogeneous components), subsampling approach has
bad performances.

However, uncertainty principle states that a vector x and its discrete Fourier transform
Fx can not be sparse simultaneously. Then we can expect using subsampling on Fx . This
is also true for the Hadamard transform.

This yields embeddings called Subsampled Randomized Fourier Transform (SRFT) or
Subsampled Randomized Hadamard Transform (SRHT).
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Subsampled Randomized Hadamard Transform

Definition (Hadamard matrix)

Let n = 2d . The Hadamard matrix Hd is defined recursively by

H1 =
1√
2

(
1 1
1 −1

)
and Hd = Hd−1 ⊗ H1 =

1√
2

(
Hd−1 Hd−1

Hd−1 −Hd−1

)
.

The component (i , j) of Hd is

(Hd)ij =
1

2d/2
(−1)

∑d−1
l=0 il jl

where i =
∑d−1

l=0 il2l et j =
∑d−1

l=0 jl2l .

The complexity of applying Hd to a vector is in O(dn) = O(n log(n)).

The Hadamard matrix Hd is symmetric, orthogonal and defines an isometry from R2d to
R2d . Its components verify |(Hd)ij | ≤ 1√

n
with n = 2d .
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Subsampled Randomized Hadamard Transform

Definition (SRHT)

For n = 2d , the SRHT is defined by

S = PHD

where

D ∈ Rn×n is a diagonal matrix whose diagonal entries are i.i.d. and uniform on
{−1, 1},
H ∈ Rn×n is a Hadamard matrix,

P ∈ Rk×n is a random matrix implementing subsampling (i.e., Pij =
√

n
k
δJi ,j where

the Ji are i.i.d. and uniform on {1, . . . , n})

The complexity of applying H is in O(n log(n)), of applying D is O(n) and applying P is
O(k). The complexity of applying S is then O(n log(n)).
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Matrices alÃ©atoires structurÃ©es: SRHT

For v a vector with norm ‖v‖2 = 1,

P(n‖HDv‖2∞ − 1 > t) ≤ ne−t2/8. (6)

From results on subsampling, we then deduce that the quasi-isometry property is satisfied
with probability higher than 1− δ if

k ≥ k(ε, δ) = 4
√
2(1 + ε)ε−2 log(2nδ−1)1/2 log(4δ−1),
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