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High-dimensional problems

Many problems of computational science, probability and statistics require the
approximation, integration or optimization of functions of many variables

u(x1, . . . , xd)
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High-dimensional problems in mechanics and physics

Navier Stokes equation
u(x , t)

∂u

∂t
+ u · ∇u − ν∆u = f

Multiscale problems
u(x , y , t), x ∈ Ω, y ∈ Y

Ω

Y
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High-dimensional problems in mechanics and physics

Boltzmann equation
f (x , p, t)

∂f

∂t
+ m−1p · ∂f

∂x
+ F · ∂f

∂p
= g

Fokker-Planck equation
p(x1, . . . , xd , t)

∂p

∂t
+

d∑
i=1

∂

∂xi
(aip)− 1

2

d∑
i,j=1

∂2

∂xixj
(bijp) = 0

Schrödinger equation
Ψ(x1, . . . , xd , t)

i~∂Ψ

∂t
= − ~

2µ
∆Ψ + VΨ
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High-dimensional problems in statistics and data science

Unsupervised learning. Estimation of the probability distribution

F (x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd),

of a random vector X = (X1, . . . ,Xd), from samples of X or some function of X .

Supervised learning. Approximation of a random variable Y by a function of a set of
random variables X = (X1, . . . ,Xd), using samples of (X ,Y ). The approximation is
used as a predictive model.

These are two typical tasks in uncertainty quantification, where Y is some output
variable of a (numerical or experimental) model depending on a set of random
parameters X .
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Low-dimensional problems as high-dimensional problems

Consider a function u(x) defined on [0, 1).

By subdividing [0, 1) into N intervals of equal length, u can be identified with a
bivariate function

u(x) = v(i , y),

where
x = N−1(i + y), i ∈ {0, . . . ,N − 1}, y ∈ [0, 1)

If N = 2d with d ∈ N, then i ∈ {0, . . . , 2d − 1} can be written in base 2

i =
d−1∑
k=0

ik2k

and u can be identified with a (d + 1)-dimensional function

v(i0, . . . , id−1, y), iν ∈ {0, 1}, y ∈ [0, 1).
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Approximation

The goal is to approximate a function

u(x1, . . . , xd)

by an element of a subset of functions Xn described by n parameters.

Xn is called an approximation tool, model class or hypothesis set.

Standard approximation tools include splines, wavelets, polynomials.

We distinguish linear approximation, where Xn are linear spaces, from nonlinear
approximation, where Xn are nonlinear spaces.
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Approximation

For a function u from a normed space, the best approximation error

en(u) = inf
v∈Xn

‖u − v‖

quantifies what we can expect from Xn.

Fundamental problems are to

Determine how fast en(u) converges for a certain class of functions, e.g.

en(u) ≤ Mγ(n)−1

where γ(n) is a strictly increasing function, or determine the complexity
n = n(ε, u) ≥ γ−1(ε/M) for having en(u) ≤ ε.
Characterize approximation classes, i.e. sets of functions for which the
approximation tool has a certain performance, e.g.

Aγ = {u : sup
n
γ(n)en(u) < +∞}

provide algorithms that practically compute approximations achieving a certain
precision with almost optimal complexity, using available information on the function
(model equations, samples...)
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What can we expect from an ideal approximation tool ?

For a set of functions K in a normed vector space X , the Kolmogorov n-width of K is

dn(K)X = inf
dim(Xn)=n

sup
u∈K

inf
v∈Xn

‖u − v‖X

where the infimum is taken over all linear subspaces of dimension n.

dn(K)X measures how well the set of functions K can be approximated by a
n-dimensional space.

It measures the ideal performance that we can expect from linear approximation methods.
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The curse of dimensionality

For X = L2(X ) with X = (0, 1)d or X = Td , and K the unit ball of the Sobolev
space Hk(X ),

dn(K)X ∼ n−k/d

this optimal rate being achieved with splines or trigonometric polynomials.

We observe the curse of dimensionality: deterioration of the rate of convergence
when d increases, exponential growth with d of the required complexity for reaching
a given accuracy.

For X = L2(X ) with X = Td , and K the unit ball of the mixed Sobolev space
Hk

mix(X ),
dn(K)X ∼ n−k log(n)k(d−1),

this rate being achieved by sparse tensors (hyperbolic cross approximation).

The curse of dimensionality is still present.

For X = L∞(X ) with X = (0, 1)d and K = {v ∈ C∞(X ) : supα ‖Dαv‖L∞ <∞},

min{n : dn(K)X ≤ 1/2} ≥ c2d/2

No blessing of smoothness !

12 / 70



How to beat the curse of dimensionality ?

Similar results hold for nonlinear widths that measure the ideal performance of
nonlinear approximation tools for standard regularity classes.

No (reasonable) approximation tool is able to overcome the curse of dimensionality
for these standard regularity classes.

The key is to consider classes of functions with specific low-dimensional structures
and to propose approximation formats (models) which exploit these structures
(application-dependent).
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Some standard model classes

Linear models
a1x1 + . . .+ adxd

Polynomial models ∑
α∈Λ

aαx
α1
1 . . . xαd

d

or more general sparse tensors∑
α∈Λ

aαϕ
1
α1(x1)...ϕd

αd
(xd)

where Λ ⊂ Nd is a set of multi-indices, either fixed (linear approximation) or free
(nonlinear approximation).

Curse of dimensionality can be circumvented for functions with sufficient anisotropy
[?].
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Some standard model classes

Additive models
u1(x1) + . . .+ ud(xd)

or more generally ∑
α⊂T

uα(xα)

where T ⊂ 2{1,...,d} is either fixed (linear approximation) or a free parameter
(nonlinear approximation).

Multiplicative models
u1(x1) . . . ud(xd)

or more generally ∏
α∈T

uα(xα)

where T ⊂ 2{1,...,d} is either a fixed or a free parameter. An instance of graphical
models.
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Composition of functions

f (g(x))

using standard model classes for both f and g .

Linear transformations (ridge functions)

f (Wx), W ∈ Rm×d

• With an additive model for f , projection pursuit

f1(wT
1 x) + . . .+ fm(wT

m x)

• A more specific case is the sum of m perceptrons (shallow neural network with
one hidden layer of width m)

m∑
i=1

aiσ(wT
i x + bi )

Sparse transformations, e.g.

f (g1,2(x1, x2), g3,4(x3, x4), ...)
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More compositions... deep neural networks

f ◦ gL ◦ gL−1 ◦ . . . ◦ g2 ◦ g1(x)

Convolutional networks, sparse transformations with sparsity induced by a balanced
tree

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Reccurent networks, sparse transformations with sparsity induced by a linear tree

f1,2,3,4 (f1,2,3 (f1,2 (f1(x1), f2(x2)) , f3(x3)) , f4(x4))

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}
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More compositions... deep neural networks

These are highly nonlinear approximation tools, with a high approximation power.

They are known to achieve the optimal performance for standard regularity classes, but
we can not expect better than classical tools without further assumptions on the function.

Even if the expected error en(u) is small for a certain function u,

there is no known certified algorithm for constructing an approximation achieving
this error,

and a best approximation (when it exists) may be highly unstable.
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Low-rank formats

Functions with rank one (multiplicative model)

v(x) = u1(x1) . . . ud(xd)

Functions with canonical rank less than r (canonical format)

v(x) =
r∑

i=1

ui
1(x1) . . . ui

d(xd)
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Low rank formats

For a subset of variables α ⊂ {1, . . . , d} := D, v(x) can be identified with a
bivariate function

v(xα, xαc ),

where xα and xαc are complementary groups of variables.

The canonical rank of this bivariate function is called the α-rank of v , denoted
rankα(v), which is the minimal integer rα such that

v(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )
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Tree based tensor formats

For T ⊂ 2D a collection of subsets of D, a tensor format is defined by

T T
r (H) = {v ∈ H : rankα(v) ≤ rα, α ∈ T} .

with H a space of multivariate functions.

In the particular case where T is a dimension partition tree, T T
r is a tree-based

tensor format.

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Tucker

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Tensor Train

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Hierarchical Tucker

22 / 70



Tree-based formats as tensor networks

Consider a tensor space H = H1 ⊗ . . .⊗Hd of functions in L2
µ(X ), and let

{φνiν : iν ∈ I ν} be a basis of Hν ⊂ L2
µν (Xν), typically polynomials, wavelets...

A function v in T T
r (H) = {v ∈ H : rankT (v) ≤ r} admits an explicit representation

v(x) =
∑
iα∈Iα
α∈L(T )

∑
1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

aα(kβ )β∈S(α),kα

∏
α∈L(T )

aαiα,kαφ
α
iα(xα)

where each parameter aα is in a tensor space RKα .

a1,2,3,4,5

a1,2,3

a1 a2,3

a2 a3

a4,5

a4 a5

Number of parameters (representation complexity)

C(T , r ,H) =
∑

α∈T\L(T )

rα
∏

β∈S(α)

rβ +
∑

α∈L(T )

rα dim(Hα).
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Tree-based tensor format as a deep neural network

By identifying a tensor a(α) ∈ Rn1×...×ns×rα with a Rrα -valued multilinear function

f (α) : Rn1 × . . .× Rns → Rrα ,

a function v in T T
r admits a representation as a tree-structured composition of

multilinear functions {f (α)}α∈T .

f 1,2,3,4,5

f 1,2,3

f 1 f 2,3

f 2 f 3

f 4,5

f 4 f 5

v(x) = f D(f 1,2,3(f 1(Φ1(x1)), f 2,3(f 2(Φ2(x2)), f 3(Φ3(x3))), f 4,5(f 4(Φ4(x4)), f 5(Φ5(x5))))

where Φν(xν) = (φνiν (xν))iν∈Iν ∈ R#Iν .

It corresponds to a deep network with a sparse architecture (given by T ), a depth
bounded by d − 1, and width at level ` related to the α-ranks of the nodes α of level `.
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Singular value decompositions of multivariate functions

We consider a multivariate function u in L2
µ(X ), where X = X1 × . . .×Xd is equipped

with a product measure µ = µ1 ⊗ . . .⊗ µd .

Consider a subset of variables α and its complementary subset αc = D \ α.

u(x1, . . . , xd) can be identified with a bivariate function u(xα, xαc ) in
L2
µα⊗µαc (Xα ×Xαc ) which admits a singular value decomposition

u(xα, xαc ) =

rankα(u)∑
k=1

σαk v
α
k (xα)vα

c

k (xαc )

The problem of best approximation of u by a function with α-rank rα,

min
rankα(v)≤rα

‖u − v‖2 := eαrα(u)2,

admits as a solution the truncated singular value decomposition urα of u

urα(xα, xαc ) =

rα∑
k=1

σαk v
α
k (xα)vα

c

k (xαc )

where {vα1 , . . . , vαrα} are the rα α-principal components of u.
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α-principal subspaces and associated projections

The subspace of principal components

Uα = span{vα1 , . . . , vαrα}

is such that
urα(·, xαc ) = PUαu(·, xαc )

where PUα is the orthogonal projection onto Uα.

It is solution of
min

dim(Uα)=rα
‖u − PUαu‖

2

that is
min

dim(Uα)=rα

∫
‖u(·, xαc )− PUαu(·, xαc )‖2L2

µα
dµαc (xαc ).
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Linear widths for multivariate functions

Consider the set of functions

Kα(u) = {u(·, xαc ) : xαc ∈ Xαc } ⊂ L2
µα(Xα)

and let ναc be the push-forward measure of µαc over Kα(u) through the map
xαc 7→ u(·, xαc ).

The best approximation error eαrα(u) is such that

eαrα(u)2 = min
dim(Uα)=rα

∫
Kα(u)

‖v − PUαv‖
2
L2
µα

dναc (v)

and defines a linear width of the set Kα(u) which measures how well it can be
approximated by a rα dimensional space Uα. It quantifies the ideal performance of a
linear approximation method in L2

µα(Xα) in a mean-square sense.
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Linear widths for multivariate functions

Assuming µ is finite,

eαrα(u) . min
dim(Uα)=rα

sup
v∈Kα(u)

‖v − PUαv‖L2
µα

= drα(Kα(u))L2
µα
,

this upper bound being the Kolmogorov rα-width of Kα(u) in L2
µα(Xα).

Furthermore, since
eαrα(u) = eα

c

rα (u),

we have
eαrα(u) ≤ min

{
drα(Kα(u))L2

µα
, drα(Kαc (u))L2

µαc

}
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Singular value decomposition in tree-based formats

The notion of singular value decomposition can be extended (in different ways) to
higher-order tensors.

Given a dimension tree T , for each α ∈ T , we let Uα be a rα-dimensional subspace of
L2
µα and define

ur = P(L)P(L−1) . . .P(1)u with P(`) =
∏
α∈T

level(α)=`

PUα

where we apply to u a sequence of projections ordered by increasing level in the tree
(from the root to the leaves). Here L = maxα∈T level(α).

level 0

level 1

level 2

level 3
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Singular value decomposition in tree-based formats

We can prove that ur ∈ T T
r with r = (rα)α∈T , so that

‖u − ur‖ ≥ min
v∈T T

r

‖u − v‖ := eTr (u)

and
‖u − ur‖2 ≤

∑
α∈T\{D}

‖u − PUαu‖
2.

Taking for Uα the α-principal subspaces, we then have

eTr (u)2 ≤ ‖u − ur‖2 ≤
∑

α∈T\{D}

eαrα(u)2

Noting that for all α,

eαrα(u) = min
rankα(v)≤rα

‖u − v‖ ≤ min
v∈T T

r

‖u − v‖,

we obtain an instance optimality result

eTr (u) ≤ ‖u − ur‖ ≤
√

#TeTr (u)

with d + 1 ≤ #T ≤ 2d − 1. For a binary tree, #T = 2d − 1.

31 / 70



Singular value decomposition in tree-based formats

For a desired precision ε, if the α-ranks rα are chosen such that

‖u − PUαu‖ ≤
ε√
#T
‖u‖,

we obtain an approximation ur such that

‖u − ur‖ ≤ ε‖u‖.

This provides an algorithm based on classical singular value decompositions for
“compressing” a tensor at a given precision.
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Approximation power of tree tensor networks

We want to quantify the approximation error

min
v∈T T

r

‖u − v‖

for a function u in a given function class, i.e. study the expressive power of tree tensor
networks, and compare it with other approximation tools.
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Expressive power of tree tensor networks

For standard regularity classes, they perform almost as well as standard
approximation tools.

For example, for u ∈ Hk
mix((0, 1)d), Kα(u) ⊂ Hk

mix((0, 1)#α) for any α. From bounds
of Kolmogorov widths of Sobolev balls

eαrα(u) ≤ drα(Kα(u)) . r−k
α log(rα)k(#α−1)

we obtain that the complexity to achieve a precision ε (with binary trees) is

n(ε, u) . ε−3/k log(ε−1)dd1+3/(2k) up to powers of log(ε−1)

Performs almost as well as hyperbolic cross approximation (sparse tensors).

Similar results in [Schneider and Uschmajew 2014] using results on bilinear
approximation [Temlyakov 1989]. See also [Griebel and Harbrecht 2019]
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Expressive power of tree tensor networks
[with M. Bachmayr and R. Schneider]

But they can perform much better for non standard classes of functions, e.g. a
tree-structured composition of regular functions {fα : α ∈ T}, see [Mhaskar, Liao,
Poggio 2016] for deep neural networks.

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assuming that the functions fα ∈W k,∞ with ‖fα‖L∞ ≤ 1 and ‖fα‖W k,∞ ≤ B, the
complexity to achieve an accuracy ε

n(ε, u) . ε−3/k(L + 1)3B3Ld1+3/2k

with L = log2(d) for a balanced tree and L + 1 = d for a linear tree.
• Bad influence of the depth through the norm B of functions fα (roughness).
• For B ≤ 1 (and even for 1-Lipschitz functions), the complexity only scales
polynomially in d : no curse of dimensionality !
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Expressive power of tree tensor networks

A function in canonical format (shallow network)

u(x) =
r∑

k=1

u1
k (x1) . . . ud

k (xd)

can be represented in tree-based format with a similar complexity.

Conversely, a typical function in tree-based format T T
r has a canonical rank

depending exponentially in d .

Deep is better !

For a balanced or linear binary tree T , the subset of tensors v in T T
r (Rn×...×n) with

canonical rank less than min{n, r}d/2 is of Lebesgue measure 0 [Cohen et al. 2016,
Khrulkov et al 2018]
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Influence of the tree

For some functions, the performance does not depend so much on the tree. For
example, an additive function

f1(x1) + . . .+ fd(xd)

has α-ranks equal to 2 whatever α ⊂ D.
But usually, different trees lead to different performances.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

TB (Balanced tree)
{1} {2}

{3}

{4}

T L (Linear tree)

• If rankTL(u) ≤ r then rankTB (u) ≤ r2

• If rankTB (u) ≤ r then rankTL(u) ≤ r log2(d)/2

But a typical function in T T
r may admit a representation complexity exponential in d

when using another tree.
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Influence of the tree

As an example, consider the probability distribution f (x) = P(X = x) of a Markov chain
X = (X1, . . . ,Xd) given by

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

where bivariate functions fi|i−1 have a rank bounded by r .

With the linear tree T containing interior nodes {1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1},
f admits a representation in tree-based format with storage complexity in r4.

The canonical rank of f is exponential in d .

But when considering the linear tree Tσ = {σ(α) : α ∈ T} obtained by applying
permutation σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) to the tree T , the storage complexity
in tree-based format is also exponential in d .
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Approximation properties of tree tensor networks

Choosing a good tree (architecture of network) is a crucial but combinatorial problem...

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

{1} {4}{2} {8}

{3} {7} {6}

{5}

{3} {2}{4}

{7}{5}

{8}{6} {1}

Can be solved with stochastic algorithms (requires some heuristics)
[Grelier, Nouy and Chevreuil 2018].
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Approximation of functions through tensorization

For a function u(x) defined for x ∈ [0, 1), we introduce the corresponding multivariate
function v defined on {0, ..., b − 1}d × [0, 1) such that

u(x) = v(i0, . . . , id−1, y)

where

x = b−dy + b−d
d−1∑
k=0

ikb
k .

This allows the identification (through a linear isometry)

L2(0, 1) = Rb . . . . . .Rb ⊗ L2(0, 1).

In practice, introduction of an approximation space Sp ⊂ L2(0, 1) (e.g. polynomial
space) and approximations in

Vb,d,p = Rb ⊗ . . .⊗ Rb ⊗ Sp

and use of tree-based formats in Vb,d,p.

For example, V2,d,0 corresponds to the space of piecewise constant functions on a
uniform mesh with 2d elements.
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Approximation of functions through tensorization

Exploiting low-rank structures of the tensorized function allows to achieve better
performance than splines on adapted meshes for functions with singularities or multiscale
functions [Kazeev and Schwab 2015 , Kazeev et al. 2017].

For u(x) = xα, 0 < α ≤ 1,
• a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n−α) in L∞,

• a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n−1) in L∞,

• a piecewise constant approximation on a uniform mesh with 2d elements
exploiting low-rank structures gives an exponential convergence in O(β−n),
where n is the complexity of the representation.

For u(x) = ezx , z ∈ C,

v(i0, . . . , id−1, y) = u1(i0), . . . ud(id−1)ud+1(y), with uk(t) = eztb
k−d

,

is a rank-one function whatever z .
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Approximation of functions through tensorization

A promising route for high-resolution simulations in low-dimension.

Figure: Scattering problem: tensorization with base b = 2, piecewise constant approximation,
storage complexity at precision 10−3 (resp. 10−5) goes from 260100 to 3532 (resp. 6170) by
exploiting low-rank structures.
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Statistical learning

Two typical tasks of statistical learning are to

approximate a random variable Y by a function of a set of variables
X = (X1, . . . ,Xd), from samples of the pair Z = (X ,Y ) (supervised learning)

approximate the probability distribution of a random vector Z = (Z1, . . . ,Zd) from
samples of the distribution (unsupervised learning)
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Risk

A classical approach is to introduce a risk functional R(v) whose minimizer over the set
of functions v is the target function u and such that

R(v)−R(u)

measures some distance between the target u and the function v .

The risk is defined as an expectation

R(v) = E(γ(v ,Z))

where γ is called a contrast (or loss) function.

For least-squares regression in supervised learning, R(v) = E((Y − v(X ))2),
u(X ) = E(Y |X ) and

R(v)−R(u) = E((u(X )− v(X ))2) = ‖u − v‖2L2
µ

with X ∼ µ.

For unsupervised learning with L2-loss, R(v) = E(‖v‖2L2
µ
− 2v(Z)) and

R(v)−R(u) = ‖u − v‖2L2
µ
is the L2 distance between v and the probability density

u of Z with respect to a reference measure µ.
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Risk

Variational methods for PDEs [Eigel et al 2018]: with Z uniformly distributed on
D = (0, 1)d and a risk

R(v) = E(|∇v(Z)|2)− 2v(Z)f (Z))

the target function u in H1
0 is such that

−∆u = f on D,

and
R(v)−R(u) = ‖v − u‖2H1

0
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Empirical risk minimization

Given i.i.d. samples {zi}ni=1 of Z , an approximation ûn
F of u is obtained by minimization

of the empirical risk

R̂n(v) =
1
n

n∑
i=1

γ(v , zi )

over a certain model class F .

Denoting by uF the minimizer of the risk over F , the error

R(ûn
F )−R(u) = R(ûn

F )−R(uF )︸ ︷︷ ︸
estimation error

+ R(uF )−R(u)︸ ︷︷ ︸
approximation error

For a given sample, when taking larger and larger model classes, approximation error
↘ while estimation error ↗.

Methods should be proposed for the selection of a model class taking the best from
the available information.
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Learning algorithm for tree tensor networks

A function v in the model class T T
r (H) has a representation v(x) = Ψ(x)((aα)α∈T )

where each parameter aα is in a tensor space RKα and Ψ(x) is a multilinear map.

The empirical risk minimization problem over the nonlinear model class T T
r

min
(aα)α∈T

1
n

n∑
i=1

γ(Ψ(·)((aα)α∈T ), zi )

can be solved using an alternating minimization algorithm, solving at each step an
empirical risk minimization problem with a linear model

Ψ(x)((aα)α∈T ) =
∑
k∈Kα

Ψα
k (x)aαk

with functions Ψα
k (x) depending on fixed parameters aβ , β 6= α.

In a L2 setting, possible re-parametrization for having orthonormal functions Ψα
k (x).

Sparsity in the tensors aα can be exploited in different ways, e.g. by proposing
different sparsity patterns and use a model selection technique (e.g. based on
validation).
For a leaf node ν, the approximation space Hν can be selected from a candidate
sequence of spaces Hν0 ⊂ . . . ⊂ HνL ⊂ . . .
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Learning algorithm for tree tensor networks

Selection an optimal model class T T
r (H) is a combinatorial problem.

An algorithm is proposed in [Grelier, Nouy, Chevreuil 2018] that performs adaptations of
the tree T (architecture), the rank r (widths) and the approximation space H.

Start with an initial tree T and learn an approximation v ∈ T T
r (H) with rank

r = (1, ..., 1). Then repeat

Increase some ranks rα based on estimates of truncation errors

min
rankα(v)≤rα

R(v)−R(u)

Learn an approximation v in T T
r (H), with adaptive selection of H

Optimize the tree for reducing the storage complexity of v (stochastic algorithm
using a suitable distribution over the set of trees)

min
T

C(T , rankT (v),H)
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Example in supervised learning: composition of functions

Consider a tree-structured composition of functions

u(X ) = h(h(h(X1,X2), h(X3,X4)), h(h(X5,X6), h(X7,X8))),

where h(t, s) = 9−1(2 + ts)2 is a bivariate function and where the d = 8 random
variables X1, . . . ,X8 are independent and uniform on [−1, 1].

h

h

h

X1 X2

h

X3 X4

h

h

X5 X6

h

X7 X8

We use polynomial approximation spaces H (with adaptive selection of the degree), so
that function u could (in principle) be recovered exactly for any choice of tree with a
sufficiently high rank.
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Example in supervised learning: composition of functions

We consider the tree T 1 coinciding with the structure of u, for which

C(T 1, rankT1(u),H) = 2427

{1} {2} {3} {4} {5} {6} {7} {8}

(a) Tree T1

{8} {1} {6} {4} {7} {2} {3} {5}

(b) Tree T1
σ

By considering a permutation T 1
σ = {σ(α) : α ∈ T 1} of T 1, with

σ = (8, 1, 6, 4, 7, 2, 3, 5), we have a complexity

C(T 1
σ , rankT1

σ
(u),H) ≥ 9.106
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Example in supervised learning: composition of functions

We consider a linear tree T 2 and start the algorithm from a tree T 2
σ = {σ(α) : α ∈ T 2}

obtained by applying a random permutation σ to T 2.

{1} {2}
{3}
{4}
{5}
{6}
{7}
{8}

(c) Tree T2

{6} {8}
{4}
{5}
{1}
{7}
{2}
{3}

(d) Tree T2
σ for σ =

(6, 8, 4, 5, 1, 7, 2, 3)
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Example in supervised learning: composition of functions

Behavior of the algorithm with a sample size n = 105

Iteration rank r εtest(v) C(T , r ,H)

1 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 3.38 10−2 79

2 (1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) 2.95 10−2 100

3 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1) 2.45 10−2 121

4 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1) 1.85 10−2 142
5 (1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2) 8.97 10−3 163

6 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 8.89 10−3 188

7 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 8.87 10−3 188

8 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 3.97 10−3 188
9 (1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3) 1.55 10−4 308

10 (1, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3) 1.18 10−4 364
11 (1, 3, 4, 3, 4, 2, 4, 3, 4, 2, 4, 3, 4, 4, 4) 6.65 10−6 520
12 (1, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 5, 5) 1.19 10−6 723
13 (1, 4, 5, 4, 5, 3, 5, 4, 5, 3, 5, 4, 5, 5, 5) 1.72 10−7 865
14 (1, 4, 6, 4, 6, 3, 6, 4, 6, 3, 6, 4, 6, 6, 6) 1.47 10−8 1113
15 (1, 5, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, 6, 6) 7.02 10−9 1311
16 (1, 5, 7, 5, 7, 3, 7, 5, 7, 3, 7, 5, 7, 7, 7) 1.27 10−10 1643
17 (1, 5, 8, 5, 8, 3, 8, 5, 8, 3, 8, 5, 8, 8, 8) 3.87 10−12 2015
18 (1, 5, 9, 5, 9, 3, 9, 5, 9, 3, 9, 5, 9, 9, 9) 2.95 10−14 2427
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The leaves {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} are labelled 9, 5, 3, 13, 11, 14, 7, 15
respectively.
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Example in supervised learning: composition of functions

Behavior of the algorithm for different sample sizes n.

n P̂(T = T 1) εtest(v) C(T , r ,H)

103 90% [1.75 10−5, 1.75 10−4] [360, 1062]
104 90% [2.15 10−8, 4.10 10−3] [185, 2741]
105 100% [4.67 10−15, 8.92 10−3] [163, 2594]

Table: training sample size n, estimation of the probability of obtaining the ideal tree T 1 and
ranges (over the 10 trials) for the test error, and the storage complexity.

56 / 70



Outline

1 High-dimensional approximation and the curse of dimensionality

2 Approximation tools in high dimension: from linear models to tensor networks

3 Singular value decomposition and linear widths of multivariate functions

4 Approximation power of tree tensor networks

5 Learning with tensor networks
Passive learning by empirical risk minimization
Active learning based on empirical principal component analysis

57 / 70



Active learning based on principal component analysis

We consider the least-squares regression setting for supervised learning.

We consider the context of active learning for the approximation of u(X ), where samples
of X can be chosen.

For the construction of an approximation in the tree-based format T T
r , we will determine

for each node α in T approximations of α-principal subspaces of u, from structured
samples of X .
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Empirical principal component analysis

For α ⊂ D = {1, . . . , d}, a subspace of α-principal components of u(X ) is solution of

min
dim(Uα)=rα

E
(
‖u(·,Xαc )− PUαu(·,Xαc )‖2L2

µα
(Xα)

)
where u is seen as a function-valued random variable

u(·,Xαc ) ∈ L2
µα(Xα).

It can be estimated using i.i.d. samples u(·, x j
αc ) of this random variable and by solving

min
dim(Uα)=rα

1
Nα

Nα∑
j=1

‖u(·, x j
αc )− PUαu(·, x j

αc )‖2L2
µα

(Xα)

where {x j
αc }Nαj=1 are i.i.d. samples of the group of variables Xαc .
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Empirical principal component analysis

In practice, we determine the principal subspaces of an approximation uα of u by solving

min
dim(Uα)=rα

1
Nα

Nα∑
j=1

‖uα(·, x j
αc )− PUαuα(·, x j

αc )‖2L2
µα

(Xα)

For a given value of xαc ,
uα(·, xαc ) = IHαu(·, xαc )

where IHα is some sample-based projection (e.g., interpolation, least-squares projection)
onto a subspace Hα.

If the projection IHα is based on a set of Mα samples of Xα, obtaining Uα requires the
evaluation of u at the Mα × Nα points

{(x i
α, x

j
αc ) : 1 ≤ i ≤ Mα, 1 ≤ j ≤ Nα}.
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Empirical principal component analysis for tree-based format

Given a tree T , the subspaces Uα ⊂ Hα are determined from the leaves to the root, and
the spaces Hα are chosen as follows.

for S(α) = ∅ (leaf node), Hα is a given approximation space (e.g., polynomials,
wavelets, kernel functions, perceptrons...)

Hα = span{φαλ : λ ∈ Iα}

for S(α) 6= ∅ (interior node), Hα =
⊗

β∈S(α) Uβ .
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Empirical principal component analysis for tree-based format

We finally obtain an approximation u? of u by a sample-based projection (e.g.,
interpolation or least-squares projection) onto the tensor space HD =

⊗
α∈S(D) Uα

u? = IHDu
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Empirical principal component analysis for tree-based format

Theorem (Fixed precision, using interpolation)

Let ε, ε̃ ≥ 0. If the subspaces Uα are determined such that

‖PUαuα − uα‖ ≤
ε√
#T
‖uα‖

and if the approximation spaces Hν , 1 ≤ ν ≤ d , are such that

‖PHνu − u‖ ≤ ε̃‖u‖,

then we obtain an approximation u? such that

‖u? − u‖2 ≤ (Λ2ε2 + Λ̃2ε̃2)‖u‖2

with Λ and Λ̃ depending on the properties of the interpolation operators.
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Illustration for approximation: Borehole function

The Borehole function models water flow through a borehole:

u(X ) =
2πTu(Hu − Hl)

ln(r/rw )
(
1 + 2LTu

ln(r/rw )r2wKw
+ Tu

Tl

) , X = (rw , log(r),Tu,Hu,Tl ,Hl , L,Kw )

rw radius of borehole (m) N(µ = 0.10, σ = 0.0161812)
r radius of influence (m) LN(µ = 7.71, σ = 1.0056)
Tu transmissivity of upper aquifer (m2/yr) U(63070, 115600)
Hu potentiometric head of upper aquifer (m) U(990, 1110)
Tl transmissivity of lower aquifer (m2/yr) U(63.1, 116)
Hl potentiometric head of lower aquifer (m) U(700, 820)
L length of borehole (m) U(1120, 1680)
Kw hydraulic conductivity of borehole (m/yr) U(9855, 12045)

Approximation in the tree-based format T T
r (H) with a linear tree

T = {{1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d − 1},D}

and polynomial approximation spaces Hν , 1 ≤ ν ≤ d .
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Illustration for approximation: Borehole function

Table: Approximation with prescribed precision ε, adaptive degree p(ε) = log10(ε−1), and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M for different ε, and average ranks. Projections based on
empirical interpolation

ε ε(u?) N S [r{1}, . . . , r{d}, r{1,2}, . . . , r{1,...,d−1}]

10−1 [1.8; 2.7]× 10−1 [39, 39] [23, 23] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

10−2 [0.3; 4.0]× 10−2 [88, 100] [41, 46] [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1]

10−3 [0.8; 1.9]× 10−3 [159, 186] [61, 78] [2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1]

10−4 [2.5; 5.6]× 10−5 [328, 328] [141, 141] [2, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2]

10−5 [0.6; 1.6]× 10−5 [444, 472] [166, 178] [2, 2, 2, 4, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2]

10−6 [3.1; 5.7]× 10−6 [596, 664] [204, 241] [3, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2]

10−7 [1.0; 6.3]× 10−7 [1042, 1267] [374, 429] [4, 3, 4, 6, 5, 3, 3, 3, 2, 2, 3, 2, 2, 2]

10−8 [1.1; 7.1]× 10−8 [1567, 1567] [512, 512] [4, 3, 4, 7, 6, 3, 3, 3, 2, 2, 3, 2, 3, 3]

10−9 [0.2; 4.9]× 10−8 [1719, 1854] [534, 560] [4, 4, 4, 8, 6, 3, 3, 3, 2, 2, 3, 2, 3, 3]

10−10 [0.3; 1.9]× 10−9 [2482, 2828] [774, 838] [5, 4, 6, 10, 7, 4, 3, 3, 2, 2, 3, 2, 3, 3]
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Approximation of a function using tensorization

Consider a function u : [0, 1)→ 1 identified with the multivariate function

u(x) = v(i0, . . . , id−1, y), x = 2−d(y +
d−1∑
k=0

ik2k)

with y ∈ [0, 1) and i0, . . . , id−1 ∈ {0, 1}.

The function v is approximated in the tree-based format T T
r (H) with a linear tree

T = {{1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d − 1},D}

and H = R2 ⊗ . . .⊗ R2 ⊗ P0. This results in a piecewise constant approximation of u on
a uniform partition of [0, 1] with 2d intervals.
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Approximation of a function using tensorization

Table: u(t) =
√
t, d = 40. Approximation in tensor train format with prescribed ε,

Nα = dim(Hα). Confidence intervals for relative L2-error ε(u?), number of evaluations M,
storage complexity S and maximal rank for different ε.

ε ε(u?) M S maxα rα
10−1 [9.3 10−3; 5.5 10−2] [182, 230] [90, 114] [2, 2]

10−2 [3.7 10−3; 8.6 10−3] [314, 350] [156, 172] [2, 3]

10−3 [5.4 10−4; 9.2 10−4] [514, 606] [252, 300] [3, 3]

10−4 [1.3 10−4; 3.3 10−3] [838, 962] [414, 474] [4, 4]

10−5 [1.8 10−5; 8.2 10−4] [1270, 1398] [626, 692] [4, 5]

10−6 [1.3 10−6; 6.3 10−5] [1900, 2036] [938, 1014] [5, 5]

10−7 [4.9 10−7; 1.3 10−6] [2444, 2718] [1218, 1344] [5, 6]

10−8 [1.0 10−7; 1.2 10−6] [3304, 3468] [1642, 1722] [6, 6]

10−9 [2.2 10−8; 1.3 10−7] [4116, 4328] [2046, 2144] [7, 7]

10−10 [8.6 10−10; 6.7 10−8] [5024, 5136] [2490, 2552] [7, 7]
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Concluding remarks

A fundamental problem would be to characterize approximation classes Aγ of tree
tensor networks, those functions for which tree tensor networks give a certain
performance

inf
v∈T T

r (H)
R(û)−R(u) . γ(n)−1

for some growth function γ and n a measure of complexity of T T
r (H).

For an approximation class Aγ , we would like to devise (black box) algorithms that
select a model class T T

r (H) and provide an approximation û ∈ T T
r (H) such that

(possibly in expectation or with a certain probability)

R(û)−R(u) . γ(n)−1,

or γ replaced by another growth function.
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