Low-rank tensor methods for parametric and stochastic problems

Part 1: Low-rank methods and projection-based model reduction

Anthony Nouy

Ecole Centrale Nantes / GeM
Nantes, France

Stochastic and parametric analyses

Stochastic or parametric model

$$
u: \equiv \rightarrow \mathcal{V} \text { such that } \mathcal{F}(u(\xi) ; \xi)=0
$$

where ξ are parameters or random variables taking values in a measure space (\equiv, μ).

- Forward problem: given μ, compute a variable of interest

$$
s(\xi)=g(u(\xi) ; \xi)
$$

and quantities of interest (statistical moments, probability of events, sensitivity indices...).

- Inverse problem: given observations of $s(\xi)$, determine ξ or estimate μ.
- Optimization: minimize objective function $s(\xi)$ over ξ.

Stochastic and parametric analyses

Ideal approach

Compute an accurate approximation of $u(\xi)$ (metamodel, reduced order model, surrogate model...) that allows fast evaluations of output variables of interest, observables, or objective function.

Complexity issues

- Complex numerical models (Part 1)

$$
\begin{gathered}
u(\xi) \in \mathcal{V}, \quad \mathcal{F}(u(\xi) ; \xi)=0 \\
\operatorname{dim}(\mathcal{V}) \gg 1
\end{gathered}
$$

- Limit the number of point evaluations
- Remedy: projection-based model reduction, approximation of $u(\xi)$ in a low-dimensional subspace (or manifold) of \mathcal{V}
- Approximation of multivariate functions (Part 2)

$$
\begin{gathered}
u\left(\xi_{1}, \ldots, \xi_{d}\right) \\
d \gg 1(\text { possibly } d=\infty)
\end{gathered}
$$

- Classical approaches suffer from the curse of dimensionality
- Remedy: adapted bases, structured approximations

A model example

Diffusion equations with random diffusion coefficient $\kappa(x, \omega)$:

$$
-\nabla \cdot(\kappa \nabla u)=f \quad+\quad \text { boundary conditions }
$$

- Groundwater flow (Nuclear Waste Disposal Simulation: Couplex)

$$
\kappa(x, \omega)=\sum_{i=1}^{d} \xi_{i}(\omega) I_{D_{i}}(x)
$$

Layer	Probability Law
$D_{1}:$ Dogger	$\xi_{1} \sim \operatorname{LU}(5,125)$
$D_{2}:$ Clay	$\xi_{2} \sim \operatorname{LU}\left(3.10^{-7}, 3.10^{-5}\right)$
$D_{3}:$ Limestone	$\xi_{3} \sim \operatorname{LU}(1.2,30)$
$D_{4}:$ Marl	$\xi_{4} \sim \operatorname{LU}\left(10^{-5}, 10^{-4}\right)$

3D problem requiring fine discretization : $\operatorname{dim}(\mathcal{V}) \gg 1$

- Random media with spatially correlated random fields

$$
\kappa(x, \omega)=\underline{\kappa}(x)+\exp \left(\underline{g}(x)+\sum_{i=1}^{d} \sqrt{\sigma_{i}} g_{i}(x) \xi_{i}(\omega)\right), \quad d \gg 1
$$

Outline

(1) Functional framework for parametric and stochastic equations
(2) Tensors
(3) Low-rank approximation of order-two tensors
(4) Computing low-rank approximations
(5) Low-rank methods for parametric and stochastic equations

Outline

(1) Functional framework for parametric and stochastic equations
(2) Tensors
(3) Low-rank approximation of order-two tensors

4 Computing low-rank approximations
(5) Low-rank methods for parametric and stochastic equations

Notations, definitions

- ξ : parameters or vector-valued random variable with probability law μ.
- $\equiv \subset \mathbb{R}^{d}$: range of ξ (parameter set)
- μ : finite measure on $\overline{ }$
- Bochner space $L_{\mu}^{p}(\equiv ; \mathcal{V})$, the set of Bochner measurable functions u defined on a measure space $(\bar{\Xi}, \mu)$ with values in a Banach space $(\mathcal{V},\|\cdot\| \mathcal{V})$, with bounded norm

$$
\begin{array}{rlr}
\|u\|_{p}=\left(\int_{\equiv}\|u(\xi)\|_{\mathcal{V}}^{p} \mu(d \xi)\right)^{1 / p} & (1 \leq p<\infty) \\
\text { or }\|u\|_{\infty}=\underset{\xi \in \equiv}{\operatorname{ess} \sup }\|u(\xi)\|_{\mathcal{V}} & (p=\infty)
\end{array}
$$

- Lebesgue space $L_{\mu}^{p}(\equiv)=L_{\mu}^{p}(\equiv ; \mathbb{R})$
- $\mathbb{E}_{\mu}(v(\xi))=\int_{\equiv} v(y) \mu(d y)$ (expectation)
- For X a normed vector space, X^{\prime} denotes the algebraic dual of X and X^{*} denotes the topological dual of X.

Abstract formulation of a class of linear problems

Parametric (or stochastic) strong form

Find $u(\xi) \in \mathcal{V}$ such that it holds μ-almost surely

$$
a(u(\xi), w ; \xi)=f(w ; \xi) \quad \forall w \in \mathcal{W}
$$

with $a(\cdot, \cdot ; \xi): \mathcal{V} \times \mathcal{W} \rightarrow \mathbb{R}$ a bilinear form and $f(\cdot ; \xi): \mathcal{W} \rightarrow \mathbb{R}$ a continuous linear form.

Assumptions on bilinear form $a(\cdot, \cdot ; \xi): \mathcal{V} \times \mathcal{W} \rightarrow \mathbb{R}$

- Uniformly continuous

$$
\sup _{v \in \mathcal{V}} \sup _{w \in \mathcal{W}} \frac{a(v, w ; \xi)}{\|v\|_{\mathcal{V}}\|w\|_{\mathcal{W}}}=\gamma(\xi) \leq \gamma_{\star}<\infty
$$

- Uniformly weakly coercive

$$
\inf _{v \in \mathcal{V}} \sup _{w \in \mathcal{W}} \frac{a(v, w ; \xi)}{\|v\| \mathcal{V}\|w\|_{\mathcal{W}}}=\alpha(\xi) \geq \alpha_{\star}>0
$$

$$
\forall w \in \mathcal{W} \backslash\{0\}, \quad \sup _{v \in \mathcal{V}} a(v, w)>0
$$

Examples

Example 1: diffusion equation with random diffusion coefficient

$$
-\nabla \cdot(\kappa(\cdot, \xi) \nabla u)=g(\cdot, \xi) \quad \text { on } \quad D, \quad u=0 \quad \text { on } \quad \partial D
$$

- $a(u, w ; \xi)=\int_{D} \nabla w(x) \cdot \kappa(x, \xi) \cdot \nabla u(x) d x, \quad f(w ; \xi)=\int_{D} g(x, \xi) w(x) d x$
- Approximation space $\mathcal{V} \subset H_{0}^{1}(D), \mathcal{W}=\mathcal{V}$.
- $\alpha_{\star} \leq \kappa(x, \xi) \leq \gamma_{\star}$ for almost all x and ξ.
- $g(\cdot, \xi) \in L^{2}(\Omega)$.

Examples

Example 2: evolution equation

$$
\begin{aligned}
& \partial_{t} u-\nabla \cdot(\kappa \nabla u)=g \quad \text { on } D \times I \\
& u=u_{0}(\cdot, \xi) \text { on } D \times\{0\}, \quad u=0 \quad \text { on } \partial D \times I
\end{aligned}
$$

- $\mathcal{V} \subset L^{2}\left(I ; H_{0}^{1}(D)\right) \cap H^{1}\left(I ; L^{2}(D)\right)$ equipped with norm

$$
\|v\|_{\mathcal{V}}^{2}=\|v\|_{L^{2}\left(1 ; H_{0}^{1}(D)\right)}^{2}+\|v\|_{H^{1}\left(1 ; L^{2}(D)\right)}^{2}
$$

- $\mathcal{W}=\mathcal{W}_{1} \times \mathcal{W}_{2} \subset L^{2}\left(I ; H_{0}^{1}(D)\right) \times L^{2}(D)$ equipped with norm $\|w\|_{\mathcal{W}}^{2}=\left\|w_{1}\right\|_{L^{2}\left(1 ; H_{0}^{1}(D)\right)}^{2}+\left\|w_{2}\right\|_{L^{2}(D)}^{2}$.
- Bilinear and linear forms

$$
\begin{aligned}
& a(v, w ; \xi)=\int_{D \times 1} \frac{\partial v}{\partial t} w_{1}+\int_{D \times 1} \kappa(\cdot, \xi) \nabla v \cdot \nabla w_{1}+\int_{D} v(\cdot, 0) w_{2}, \quad \text { and } \\
& f(w ; \xi)=\int_{D \times 1} g(\cdot, \cdot, \xi) w_{1}+\int_{D} u_{0}(\cdot, \xi) w_{2} .
\end{aligned}
$$

- Assume $\tilde{\alpha} \leq \kappa(x, \xi) \leq \tilde{\beta}$.

Examples

Example 3 : diffusion equation on a random domain

$$
-\Delta U(x, \xi)=g(x) \quad \text { for } \quad x \in D(\xi), \quad U(x, \xi)=0 \quad \text { for } \quad x \in \partial D(\xi)
$$

- Assume $\phi(\cdot ; \xi): D_{0} \rightarrow D(\xi)$ is a diffeomorphism from a deterministic domain D_{0} to $D(\xi)$.
- Change of variable $u\left(x_{0}, \xi\right)=U\left(\phi\left(x_{0}, \xi\right), \xi\right), x_{0} \in D_{0}$.
- Bilinear form $a(u, w ; \xi)=\int_{D_{0}} \nabla w\left(x_{0}\right) \cdot K\left(x_{0}, \xi\right) \cdot \nabla u\left(x_{0}\right) d x_{0}$, with $K=\nabla \phi \nabla \phi^{\top}|\operatorname{det}(\nabla \phi)|$
- Linear form $f(w ; \xi)=\int_{D_{0}} g_{0}\left(x_{0}, \xi\right) w\left(x_{0}\right) d x_{0}$, with $g_{0}\left(x_{0}, \xi\right)=g\left(\phi\left(x_{0}, \xi\right)\right)\left|\operatorname{det}\left(\nabla \phi\left(x_{0}, \xi\right)\right)\right|$
- Assumption on the diffeomorphism

$$
\tilde{\alpha}\|\zeta\|_{2} \leq\left\|\nabla \phi\left(x_{0}, \xi\right) \zeta\right\|_{2} \leq \tilde{\beta}\|\zeta\|_{2}
$$

- Approximation $u \in \mathcal{V} \subset H_{0}^{1}\left(D_{0}\right), \mathcal{W}=\mathcal{V}$.

Operator equation and algebraic form

- Corresponding operator equation

$$
\begin{gathered}
A(\xi) u(\xi)=f(\xi) \\
A(\xi): \mathcal{V} \rightarrow \mathcal{W}^{*} \\
\text { such that } \quad a(v, w ; \xi)=\langle A(\xi) v, w\rangle \\
f(\xi) \in \mathcal{W}^{*} \quad \text { such that } \quad f(w ; \xi)=\langle f(\xi), w\rangle
\end{gathered}
$$

- Operator $A(\xi): \mathcal{V} \rightarrow \mathcal{W}^{*}$ is an isomorphism such that

$$
\alpha(\xi)\|v\| \nu \leq\|A(\xi) v\|_{\mathcal{W}^{*}} \leq \gamma(\xi)\|v\|_{\mathcal{v}}
$$

- Given bases $\left\{\varphi_{i}\right\}_{i=1}^{N}$ and $\left\{\phi_{i}\right\}_{i=1}^{N}$ of \mathcal{V} and \mathcal{W}, algebraic formulation

$$
\mathbf{u}(\xi) \in \mathbb{R}^{N}, \quad \mathbf{A}(\xi) \mathbf{u}(\xi)=\mathbf{f}(\xi)
$$

with $(\mathbf{A}(\xi))_{i j}=\left\langle\boldsymbol{A} \varphi_{j}, \phi_{i}\right\rangle,(\mathbf{f}(\xi))_{i}=\left\langle f(\xi), \phi_{i}\right\rangle$, and $u(\xi)=\sum_{j=1}^{N}(\mathbf{u}(\xi))_{j} \varphi_{j}$.

Regularity of the solution

- Regularity of the solution

$$
\|u(\xi)\| \nu \leq \frac{1}{\alpha(\xi)}\|f(\xi)\|_{\mathcal{W}^{*}}
$$

If $\alpha(\xi) \geq \alpha_{\star}>0$,

$$
\|u\|_{p}=\mathbb{E}_{\mu}\left(\|u(\xi)\|_{\mathcal{V}}^{p}\right)^{1 / p} \leq \mathbb{E}_{\mu}\left(\frac{1}{\alpha(\xi)^{p}}\|f(\xi)\|_{\mathcal{W}^{*}}^{p}\right)^{1 / p} \leq \frac{1}{\alpha_{\star}}\|f\|_{p}
$$

If $f \in L_{\mu}^{p}\left(\equiv ; \mathcal{W}^{*}\right)$, then

$$
u \in L_{\mu}^{p}(\equiv ; \mathcal{V})
$$

- For $\alpha_{\star}=0$ and/or $\gamma_{\star}=\infty$, see [Mugler-Starkloff 2011, Charrier 2012, Nouy-Soize 2014]
- From now on, assume

$$
u \in L_{\mu}^{2}(\equiv ; \mathcal{V})
$$

Stochastic (or parametric) weak form

If $u(\xi)$ satisfies almost surely

$$
A(\xi) u(\xi)=f(\xi)
$$

then for all (measurable) functions $w: \equiv \rightarrow \mathcal{W}$

$$
\mathbb{E}_{\mu}(\langle A(\xi) u(\xi), w(\xi)\rangle)=\mathbb{E}_{\mu}(\langle f(\xi), w(\xi)\rangle)
$$

or

$$
B(u, w)=F(w)
$$

with

$$
\begin{gathered}
B(v, w)=\mathbb{E}_{\mu}(\langle A(\xi) v(\xi), w(\xi)\rangle)=\int_{\equiv}\langle A(y) v(y), w(y)\rangle \mu(d y) \\
F(w)=\mathbb{E}_{\mu}(\langle f(\xi), w(\xi)\rangle)=\int_{\equiv}\langle f(y), w(y)\rangle \mu(d y)
\end{gathered}
$$

Weak formulation

Find $u \in X$ such that

$$
\begin{equation*}
B(u, w)=F(w) \quad \forall w \in Y \tag{1}
\end{equation*}
$$

Stochatic (or parametric) weak form

Let

$$
X=L_{\mu}^{2}(\equiv ; \mathcal{V}), \quad Y=L_{\mu}^{2}(\Xi ; \mathcal{W})
$$

Under previous assumptions on $A(\xi)$, we deduce the following properties.

Properties of bilinear form $B: X \times Y \rightarrow \mathbb{R}$

- Continuous

$$
\sup _{v \in X} \sup _{w \in Y} \frac{B(v, w)}{\|v\|_{X}\|w\|_{Y}} \leq \gamma_{\star}<\infty
$$

- Weakly coercive

$$
\inf _{v \in X} \sup _{w \in Y} \frac{B(v, w)}{\|v\| x\|w\|_{Y}} \geq \alpha_{\star}>0
$$

$$
\begin{equation*}
\forall w \in X \backslash\{0\}, \quad \sup _{v \in v} B(v, w)>0 \tag{3}
\end{equation*}
$$

Recall that (2) and (3) are satisfied if $B: X \times X \rightarrow \mathbb{R}$ is coercive :

$$
\inf _{v \in X} \frac{B(v, v)}{\|v\|_{X}^{2}} \geq \alpha_{\star}>0
$$

Parametric (or stochastic) weak form

Theorem
If $F \in Y^{*}=L_{\mu}^{2}\left(\Xi ; \mathcal{W}^{*}\right)$, there exists a unique solution $u \in X=L_{\mu}^{2}(\Xi ; \mathcal{V})$ to problem (1) and

$$
\|u\|_{X} \leq \frac{1}{\alpha_{\star}}\|F\|_{Y^{*}}
$$

Galerkin methods

- Introduce approximation spaces

$$
\begin{aligned}
& X_{n} \subset X \\
& Y_{n} \subset Y
\end{aligned}
$$

- Galerkin approximation defined by

$$
u_{n} \in X_{n} \quad \text { such that } \quad B\left(u_{n}, w_{n}\right)=F\left(w_{n}\right) \quad \forall w_{n} \in Y_{n}
$$

Galerkin methods

- Assume uniform stability of approximation spaces

$$
\begin{equation*}
\inf _{u_{n} \in X_{n}} \sup _{w_{n} \in Y_{n}} \frac{B\left(u_{n}, w_{n}\right)}{\left\|u_{n}\right\| x\left\|w_{n}\right\|_{Y}} \geq \alpha_{\star} \tag{4}
\end{equation*}
$$

In particular, (4) is satisfied

- if B is coercive and $X_{n}=Y_{n}$.
- if $Y_{n}=\left\{w_{n}(\xi)=R_{\mathcal{W}}^{-1} A(\xi) v_{n}(\xi): v_{n} \in X_{n}\right\}$ with $R_{\mathcal{W}}$ the Riesz map from \mathcal{W} to \mathcal{W}^{*}.
- Quasi-optimality

$$
\left\|u-u_{n}\right\|_{x} \leq C \inf _{v \in X_{n}}\|u-v\|_{x} \quad \text { with } \quad C=1+\frac{\gamma_{\star}}{\alpha_{\star}}
$$

The analysis of the best approximation error $\inf _{v \in X_{n}}\|u-v\|_{x}$ requires extra information on approximation spaces and the solution u (regularity).

- Convergence: For an increasing sequence of approximation spaces $X_{n} \subset X_{n+1}$ such that $\bigcup_{n \geq 1} X_{n}$ is dense in X, then $\left\|u-u_{n}\right\| \rightarrow 0$ when $n \rightarrow \infty$.
- Stability: For u_{n} and u_{n} Galerkin approximations of u and u^{\prime}, then

$$
\left\|u_{n}-u_{n}^{\prime}\right\|_{x} \leq \frac{\gamma_{\star}}{\alpha_{\star}}\left\|u-u^{\prime}\right\| x
$$

Galerkin methods

- What are the classical choices for approximation spaces X_{n} ?
- Projection-based model reduction

$$
X_{n}=\mathcal{V}_{n} \otimes L_{\mu}^{2}(\equiv)=\left\{\sum_{i=1}^{n} v_{i} s_{i}(\xi): s_{i} \in L_{\mu}^{2}(\equiv)\right\}
$$

- Stochastic Galerkin methods

$$
X_{n}=\mathcal{V} \otimes \mathcal{S}_{n}=\left\{\sum_{j=1}^{n} u_{j} \psi_{j}(\xi): u_{j} \in \mathcal{V}\right\}
$$

- How does the best approximation $\inf _{v \in X_{n}}\|u-v\|_{x}$ behaves for these approximation spaces ?
- Can we characterize and compute optimal approximation spaces \mathcal{V}_{n} and \mathcal{S}_{n} : relation with optimal low-rank approximation...

Outline

(1) Functional framework for parametric and stochastic equations
(2) Tensors
(3) Low-rank approximation of order-two tensors

4 Computing low-rank approximations
(5) Low-rank methods for parametric and stochastic equations

Tensor spaces

- Let \mathcal{V} and \mathcal{S} two vector spaces. The algebraic tensor space $\mathcal{V} \otimes \mathcal{S}$ is the set of elements of the form

$$
\sum_{i=1}^{m} v_{i} \otimes s_{i}
$$

with $v_{i} \in \mathcal{V}, s_{i} \in \mathcal{S}$, and $m \in \mathbb{N}$.

- A tensor Banach space is obtained by the completion of the algebraic tensor space $\mathcal{V} \otimes \mathcal{S}$ with respect to a norm $\|\cdot\|$:

$$
\mathcal{V} \otimes_{\|\cdot\|} \mathcal{S}=\overline{\mathcal{V}} \otimes \mathcal{S}^{\|\cdot\|}
$$

Examples of finite dimensional tensor spaces

- Matrices

$$
\begin{gathered}
a \in \mathbb{R}^{N \times M}=\mathbb{R}^{N} \otimes \mathbb{R}^{M} \\
a=\sum_{i=1}^{N} \sum_{j=1}^{M} a_{i j} e_{i} \otimes e_{j}
\end{gathered}
$$

- Finite dimensional tensor spaces

$$
\mathcal{V} \otimes \mathcal{S}={\overline{\mathcal{V}} \otimes \mathcal{S}^{\|\cdot\|}}^{\|}
$$

Denoting $\left\{\phi_{i}\right\}_{i=1}^{N}$ a basis of \mathcal{V} and $\left\{\psi_{i}\right\}_{i=1}^{M}$ a basis of $\mathcal{S}, u \in \mathcal{V} \otimes \mathcal{S}$ can be written

$$
u=\sum_{i=1}^{N} \sum_{j=1}^{M} a_{i j} \phi_{i} \otimes \psi_{j}
$$

and identified with

$$
a \in \mathbb{R}^{N} \otimes \mathbb{R}^{M}
$$

Bochner spaces

- The Bochner space $L_{\mu}^{p}(\Xi ; \mathcal{V})$ is the set of Bochner measurable functions u defined on a measure space $(\bar{\Xi}, \mu)$ with values in a Banach space $(\mathcal{V},\|\cdot\| \mathcal{V})$, with bounded norm

$$
\begin{array}{rlr}
\|u\|_{p}=\left(\int_{\equiv}\|u(\xi)\|_{\mathcal{V}}^{p} \mu(d \xi)\right)^{1 / p} & (1 \leq p<\infty) \\
\text { or }\|u\|_{\infty}=\underset{\xi \in \equiv}{\operatorname{ess} \sup }\|u(\xi)\|_{\mathcal{V}} & (p=\infty)
\end{array}
$$

- An element $u \in L_{\mu}^{p}(\equiv) \otimes \mathcal{V}$ is of the form

$$
u(\xi)=\left(\sum_{i=1}^{m} s_{i} \otimes v_{i}\right)(\xi)=\sum_{i=1}^{m} s_{i}(\xi) v_{i}, \quad \xi \in \equiv
$$

- Case $1 \leq p<\infty$.

$$
\overline{L_{\mu}^{p}(\equiv) \otimes \mathcal{V}^{\|}} \|^{\|_{p}}=L_{\mu}^{p}(\equiv ; \mathcal{V})
$$

- Case $p=\infty$.

$$
\overline{L_{\mu}^{\infty}(\equiv) \otimes \mathcal{V}^{\|\cdot\| \infty} \subset L_{\mu}^{\infty}(\equiv ; \mathcal{V}) ~}
$$

with equality if \mathcal{V} is a Hilbert space or if μ is a discrete measure with finite support $\Xi_{M}=\left\{\xi_{i}\right\}_{i=1}^{M}: \mu=\sum_{\xi \in \Xi_{M}} \delta_{\xi_{i}}$, then $L_{\mu}^{p}(\equiv) \simeq \mathbb{R}^{M}$ and $L_{\mu}^{p}(\equiv ; \mathcal{V})=L_{\mu}^{p}(\equiv) \otimes \mathcal{V} \simeq \mathbb{R}^{M} \otimes \mathcal{V}$

Tensor norms

- We consider that \mathcal{V} and \mathcal{S} are normed spaces equipped with norms $\|\cdot\| \nu$ and $\|\cdot\| \mathcal{S}$.
- A necessary condition for a norm $\|\cdot\|$ on $\mathcal{V} \otimes \mathcal{S}$ is the continuity of the tensor product map $\otimes: \mathcal{V} \times \mathcal{S} \rightarrow \mathcal{V} \otimes \mathcal{S}$, that means the existence of C such that

$$
\|v \otimes s\| \leq C\|v\|_{\nu}\|s\|_{s}
$$

- A norm $\|\cdot\|$ is called a crossnorm if

$$
\|v \otimes s\|=\|v\|_{v}\left\|_{s}\right\|_{\mathcal{S}}
$$

This property does not define a norm on the whole algebraic space $\mathcal{V} \otimes \mathcal{S}$.

- Norms $\|\cdot\|$ on $\mathcal{V} \otimes \mathcal{S}$ can be completely defined from the norms $\|\cdot\|_{\mathcal{V}}$ and $\|\cdot\|_{\mathcal{S}}$. These are called canonical or induced norms.

Projective norm

- For $u \in \mathcal{V} \otimes \mathcal{S}$, the projective norm is defined by

$$
\|u\|_{\wedge}=\inf \left\{\sum_{i=1}^{m}\left\|v_{i}\right\|_{\mathcal{V}}\left\|_{s_{i}}\right\|_{\mathcal{S}}: u=\sum_{i=1}^{m} v_{i} \otimes s_{i}\right\}
$$

where the infimum is taken over all representations of u.

- The projective norm is stronger than any norm $\|\cdot\|$ making continuous the tensor product map $\otimes: \mathcal{V} \times \mathcal{S} \rightarrow \mathcal{V} \otimes \mathcal{S}$, that means

$$
\|\cdot\| \lesssim\|\cdot\|_{\wedge}
$$

so that

$$
\mathcal{V} \otimes_{\|\cdot\|_{\wedge}} \mathcal{S} \subset \mathcal{V} \otimes_{\|\cdot\|} \mathcal{S}
$$

Dual spaces

- For X a normed vector space, X^{\prime} denotes the algebraic dual of X and X^{*} denotes the topological dual of X. We denote by $\|\cdot\|_{X}^{*}$ the dual norm to $\|\cdot\|_{X}$, defined for $\varphi \in X^{*}$ by $\|\varphi\|_{x}^{*}=\sup \left\{\varphi(x): x \in X,\|x\|_{x}=1\right\}$.
- For $\varphi \in \mathcal{V}^{\prime}$ and $\psi \in \mathcal{S}^{\prime}$, an element $\varphi \otimes \psi \in \mathcal{V}^{\prime} \otimes \mathcal{S}^{\prime}$ can be seen as a linear form on $\mathcal{V} \otimes \mathcal{S}$ via the definition

$$
(\varphi \otimes \psi)(v \otimes s)=\varphi(v) \psi(s)
$$

so that

$$
\mathcal{V}^{*} \otimes \mathcal{S}^{*} \subset \mathcal{V}^{\prime} \otimes \mathcal{S}^{\prime} \subset(\mathcal{V} \otimes \mathcal{S})^{\prime}
$$

- A norm $\|\cdot\|$ on $\mathcal{V} \otimes \mathcal{S}$ allows to define a dual space $(\mathcal{V} \otimes \mathcal{S})^{*}$ equipped with a dual norm denoted $\|\cdot\|^{*}$.
- If $\|\cdot\|$ is such that the tensor product map $\otimes: \mathcal{V}^{*} \times \mathcal{S}^{*} \rightarrow \mathcal{V}^{*} \otimes \mathcal{S}^{*}$ is continuous, that means

$$
\|\varphi \otimes \psi\|^{*} \leq C\|\varphi\|_{\mathcal{L}}^{*}\|\psi\|_{\mathcal{S}}^{*}
$$

for some constant C, then

$$
\mathcal{V}^{*} \otimes \mathcal{S}^{*} \subset(\mathcal{V} \otimes \mathcal{S})^{*}
$$

- A crossnorm $\|\cdot\|$ such that $\|\cdot\|^{*}$ is also a crossnorm is called a reasonable crossnorm. The projective norm is a reasonable crossnorm.

Injective norm

- For $u \in \mathcal{V} \otimes \mathcal{S}$, the injective norm is defined by

$$
\|u\|_{\vee}=\sup \left\{(\varphi \otimes \psi)(u): \varphi \in \mathcal{V}^{*}, \psi \in \mathcal{S}^{*},\|\varphi\|_{\mathcal{V}}^{*}=\|\psi\|_{\mathcal{S}}^{*}=1\right\}
$$

- The injective norm is a reasonable crossnorm.
- The injective norm is weaker than any other norm $\|\cdot\|$ making the tensor product map $\otimes: \mathcal{V}^{*} \times \mathcal{S}^{*} \rightarrow \mathcal{V}^{*} \otimes \mathcal{S}^{*}$ continuous, that means

$$
\|\cdot\| \gtrsim\|\cdot\|_{v} \quad\left(\|\cdot\|^{*} \lesssim\|\cdot\|_{v}^{*}\right)
$$

so that

$$
\mathcal{V} \otimes_{\|\cdot\|} \mathcal{S} \subset \mathcal{V} \otimes_{\|\cdot\|_{v}} \mathcal{S}
$$

Hilbert tensor space

- Assume that \mathcal{V} and \mathcal{S} are Hilbert spaces equipped with inner products $\langle\cdot, \cdot\rangle_{\mathcal{V}}$ and $\langle\cdot, \cdot\rangle_{\mathcal{S}}$.
- A canonical inner product $\langle\cdot, \cdot\rangle$ can be defined for $v, \tilde{v} \in \mathcal{V}$ and $s, \tilde{s} \in \mathcal{S}$ by

$$
\langle v \otimes s, \tilde{v} \otimes \tilde{s}\rangle=\langle v, \tilde{v}\rangle_{\mathcal{V}}\langle s, \tilde{s}\rangle_{\mathcal{S}}
$$

and extended by linearity to $\mathcal{V} \otimes \mathcal{S}$.

- The associated norm $\|\cdot\|$ is a reasonable crossnorm.

Relation with operators

- Assume that \mathcal{V} is a Hilbert space.
- $u=\sum_{i=1}^{m} v_{i} \otimes s_{i} \in \mathcal{V} \otimes \mathcal{S}$ can be identified with a linear operator from \mathcal{V} to \mathcal{S} such that for $v \in \mathcal{V}$

$$
u(v)=\sum_{i=1}^{m}\left\langle v_{i}, v\right\rangle s_{i}, \quad \operatorname{Im}(u) \subset \operatorname{span}\left\{s_{i}\right\}_{i=1}^{m}
$$

- The algebraic tensor space coincides with the set of finite rank operators

$$
\mathcal{V} \otimes \mathcal{S}=\mathcal{F}(\mathcal{V}, \mathcal{S})
$$

Relation with operators

- The injective norm $\|u\|_{V}$ coincides with the operator norm $\sup _{\|v\|_{\nu}=1}\|u(v)\|_{\mathcal{S}}$, and

$$
\overline{\mathcal{V} \otimes \mathcal{S}^{\|\cdot\|_{\vee}}=\overline{\mathcal{F}(\mathcal{V}, \mathcal{S})}=\mathcal{K}(\mathcal{V}, \mathcal{S}), ~, ~}
$$

the set of compact operators.

- The tensor space equipped with the projective norm coincides with the set of nuclear operators

$$
\overline{\mathcal{V} \otimes \mathcal{S}^{\|} \cdot \| \wedge}=\mathcal{N}(\mathcal{V}, \mathcal{S})
$$

- If \mathcal{S} is also a Hilbert space, the tensor space equipped with the canonical inner product norm $\|\cdot\|$ coincides with the space of Hilbert-Schmidt operators

$$
{\overline{\mathcal{V}} \otimes \mathcal{S}^{\|\cdot\|}}^{\|}=H S(\mathcal{V}, \mathcal{S})
$$

Singular value decomposition

- Assume \mathcal{V} and \mathcal{S} are Hilbert spaces.
- $u \in \mathcal{K}(\mathcal{V}, \mathcal{S})$ admits a singular value decomposition : there exist orthonormal systems $\left\{v_{i}\right\}$ in \mathcal{V} and $\left\{s_{i}\right\} \in \mathcal{S}$, and a non increasing positive sequence $\left\{\sigma_{i}\right\}$ with $\sigma_{i} \searrow 0$ such that

$$
u=\sum_{i=1}^{\infty} \sigma_{i} v_{i} \otimes s_{i}
$$

which converges in the operator norm.

- Injective norm

$$
\|u\|_{\vee}=\sigma_{1}
$$

- Projective norm

$$
\|u\|_{\wedge}=\sum_{i=1}^{\infty} \sigma_{i}
$$

- The canonical inner product norm coincides with the Hilbert Schmidt norm

$$
\|u\|_{H S}^{2}=\sum_{i=1}^{\infty} \sigma_{i}^{2}
$$

Coming back to Bochner spaces

- $L_{\mu}^{1}(\equiv ; \mathcal{V})=\overline{L_{\mu}^{1}(\equiv) \otimes \mathcal{V}^{\|\cdot\|_{1}}}$,

$$
\|\cdot\|_{1}=\|\cdot\|_{\wedge}
$$

- $L_{\mu}^{\infty}(\Xi ; \mathcal{V}) \supset \overline{L_{\mu}^{\infty}(\equiv) \otimes \mathcal{V}^{\|} \cdot \|_{\infty}}$,

$$
\|\cdot\|_{\infty}=\|\cdot\|_{v}
$$

- $L_{\mu}^{p}(\Xi ; \mathcal{V})=\overline{L_{\mu}^{p}(\Xi) \otimes \mathcal{V}^{\|\cdot\|_{\rho}}(1 \leq p<\infty), ~}$

$$
\|\cdot\|_{\vee} \leq\|\cdot\|_{p} \leq\|\cdot\|_{\wedge}
$$

Outline

(1) Functional framework for parametric and stochastic equations
(2) Tensors
(3) Low-rank approximation of order-two tensors

4 Computing low-rank approximations
(5) Low-rank methods for parametric and stochastic equations

Low-rank approximation of order-two tensors

- For an order-two tensor $w \in \mathcal{V} \otimes \mathcal{S}$, single notion of rank:

$$
\operatorname{rank}(w) \leq m \quad \Leftrightarrow \quad w=\sum_{i=1}^{m} v_{i} \otimes s_{i}
$$

- Set of tensors with rank bounded by m

$$
\mathcal{R}_{m}=\{w \in \mathcal{V} \otimes \mathcal{S}: \operatorname{rank}(w) \leq m\}
$$

- Best approximation $u_{m} \in \mathcal{R}_{m}$ (provided it exists) of

$$
u \in \mathcal{V} \otimes_{\|\cdot\|} \mathcal{S}
$$

with respect to $\|\cdot\|$ defined by

$$
\left\|u-u_{m}\right\|=\min _{w \in \mathcal{R}_{m}}\|u-w\|
$$

Minimal subspaces

- The minimal subspaces $U_{1}^{\text {min }}(w)$ and $U_{2}^{\text {min }}(w)$ of $w \in \mathcal{V} \otimes \mathcal{S}$ are the smallest subspaces in \mathcal{V} and \mathcal{S} respectively such that

$$
w \in U_{1}^{\min }(w) \otimes \mathcal{S} \quad \text { and } \quad \mathcal{V} \otimes U_{2}^{\min }(w)
$$

- For $w \in \mathcal{V} \otimes \mathcal{S}$

$$
U_{1}^{\min }(w)=\left\{\left(I_{d} \otimes \psi\right)(w): \psi \in \mathcal{S}^{\prime}\right\}, \quad U_{2}^{\min }(w)=\left\{\left(\varphi \otimes I_{d}\right)(w): \varphi \in \mathcal{V}^{\prime}\right\}
$$

- Rank of $w \in \mathcal{V} \otimes \mathcal{S}$

$$
\operatorname{rank}(w)=\operatorname{dim}\left(U_{1}^{\min }(w)\right)=\operatorname{dim}\left(U_{2}^{\min }(w)\right)
$$

Well-posedness of best approximation problem

- If $\|\cdot\| \gtrsim\|\cdot\|_{v}$, then

$$
\operatorname{rank}(\cdot): \overline{\mathcal{V} \otimes \mathcal{S}^{\|\cdot\|}} \rightarrow \mathbb{R}
$$

is weakly lower semi-continuous (w.l.s.c.) and therefore,

$$
\mathcal{R}_{m}=\{w \in \mathcal{V} \otimes \mathcal{S}: \operatorname{rank}(w) \leq m\}
$$

is weakly closed.

- If $\|\cdot\| \gtrsim\|\cdot\| \vee$ and $\overline{\mathcal{V} \otimes \mathcal{S}^{\|\cdot\|}}$ is reflexive, then a best approximation in \mathcal{R}_{m} exists.
- If $\|\cdot\|$ is not stronger than $\|\cdot\|_{\vee}$ but the tensor space is an intersection of tensor spaces with such conditions on norms, well-posedness results can be obtained.

Low-rank approximation of order-two tensors: subspace point of view

- Subspace-based parametrization of \mathcal{R}_{m}

$$
\mathcal{R}_{m}=\left\{w \in \mathcal{V}_{m} \otimes \mathcal{S}_{m} ; \operatorname{dim}\left(\mathcal{V}_{m}\right)=m, \operatorname{dim}\left(\mathcal{S}_{m}\right)=m\right\}
$$

or

$$
\mathcal{R}_{m}=\left\{w \in \mathcal{V}_{m} \otimes \mathcal{S} ; \operatorname{dim}\left(\mathcal{V}_{m}\right)=m\right\}
$$

- Best rank-m approximation of $u \in \mathcal{V} \otimes_{\|\cdot\|} \mathcal{S}$

$$
\min _{u_{m} \in \mathcal{R}_{m}}\left\|u-u_{m}\right\|=\min _{\operatorname{dim}\left(\mathcal{V}_{m}\right)=m} \min _{\operatorname{dim}\left(\mathcal{S}_{m}\right)=m} \min _{u_{m} \in \mathcal{V}_{m} \otimes \mathcal{S}_{m}}\left\|u-u_{m}\right\|
$$

or

$$
\min _{u_{m} \in \mathcal{R}_{m}}\left\|u-u_{m}\right\|=\min _{\operatorname{dim}\left(\mathcal{V}_{m}\right)=m} \min _{u_{m} \in \mathcal{V}_{m} \otimes \mathcal{S}}\left\|u-u_{m}\right\|
$$

- That defines sequences of optimal subspaces \mathcal{V}_{m} and \mathcal{S}_{m} (w.r.t. the chosen norm $\|\cdot\|)$. For $u_{m}=\sum_{i=1}^{m} v_{i} \otimes s_{i}, \mathcal{V}_{m}=\operatorname{span}\left\{v_{i}\right\}_{i=1}^{m}$ and $\mathcal{S}_{m}=\operatorname{span}\left\{s_{i}\right\}_{i=1}^{m}$.

Hilbert setting: induced norm and SVD

Let \mathcal{V} and \mathcal{S} be Hilbert spaces and $\|\cdot\|$ the canonical (induced) inner product norm,

$$
\left\langle v \otimes s, v^{\prime} \otimes s^{\prime}\right\rangle=\left\langle v, v^{\prime}\right\rangle_{\nu}\left\langle s, s^{\prime}\right\rangle_{\mathcal{s}}
$$

- $u \in \mathcal{V} \otimes_{\|\cdot\|} \mathcal{S}$ is identified with an operator $u: v \in \mathcal{V} \rightarrow\langle u, v\rangle_{\mathcal{V}} \in \mathcal{S}$ which is compact and admits a singular value decomposition

$$
u=\sum_{i=1}^{\infty} \sigma_{i} v_{i} \otimes s_{i}, \quad\left(\sigma_{i}\right) \in \ell_{2}(\mathbb{N})
$$

- The best rank- m approximation u_{m} in the norm $\|\cdot\|$ coincides with the rank- m truncated singular value decomposition of u.

$$
u_{m}=\sum_{i=1}^{m} \sigma_{i} v_{i} \otimes s_{i}
$$

- Notion of decomposition with successive optimality conditions.
- Nested subspaces $\mathcal{V}_{m}=\operatorname{span}\left\{v_{i}\right\}_{i=1}^{m}$ and $\mathcal{S}_{m}=\operatorname{span}\left\{s_{i}\right\}_{i=1}^{m}$:

$$
\mathcal{V}_{m} \subset \mathcal{V}_{m+1} \quad \text { and } \quad \mathcal{S}_{m} \subset \mathcal{S}_{m+1}
$$

Low-rank approximation in $\mathcal{V} \otimes L_{\mu}^{p}(\equiv)$

- Natural (induced) norm

$$
\|u\|_{p}=\left(\int_{\equiv}\|u(\xi)\|_{\mathcal{V}}^{p} \mu(d \xi)\right)^{1 / p} \quad \text { for } p<\infty \quad \text { or } \quad\|u\|_{\infty}=\underset{\xi \in \equiv}{\operatorname{ess} \sup }\|u(\xi)\|_{\mathcal{V}}
$$

- A rank- m approximation u_{m} is of the form $u_{m}(\xi)=\sum_{i=1}^{m} v_{i} s_{i}(\xi)$
- The best rank- m approximation solves

$$
\begin{gathered}
\min _{w \in \mathcal{R}_{m}}\|u-w\|_{p}=\min _{\operatorname{dim}\left(\mathcal{V}_{m}\right)=m} \min _{w \in \mathcal{V}_{m} \otimes L_{\mu}^{p}}\|u-w\|_{p}=\min _{\operatorname{dim}\left(\mathcal{V}_{m}\right)=m}\left\|u-P \mathcal{V}_{m} u\right\|_{p} \\
\text { with }\left\|u(\xi)-P_{\mathcal{V}_{m}} u(\xi)\right\| \mathcal{V}=\min _{v \in \mathcal{V}_{m}}\|u(\xi)-v\| \mathcal{V}
\end{gathered}
$$

- Relation with optimal projection-based model reduction

$$
\min _{w \in \mathcal{R}_{m}}\|u-w\|_{p}=\min _{\operatorname{dim}\left(\mathcal{V}_{m}\right)=m}\| \| u(\xi)-P_{\mathcal{V}_{m}} u(\xi)\left\|_{\mathcal{V}}\right\|_{L_{\mu}^{p}(\equiv)}:=d_{m}^{(p)}(u)
$$

Low-rank approximation in $\mathcal{V} \otimes L_{\mu}^{p}(\equiv)$

- $d_{m}^{(p)}(u)$ is a linear width of the set of solutions $K=\{u(\xi): \xi \in \equiv\} \subset \mathcal{V}$ that measures how well can be approximated by a m-dimensional space \mathcal{V}_{m}. It quantifies the ideal performance of a linear method.
- For $p=\infty$, Kolmogorov m-width

$$
d_{m}^{(\infty)}(u):=\min _{\operatorname{dim}\left(\mathcal{V}_{m}\right)=m} \operatorname{ess} \sup _{\xi \in \equiv}\left\|u(\xi)-P_{\mathcal{V}_{m}} u(\xi)\right\| \mathcal{V} \leq d_{m}(K)
$$

- For $p<\infty$, linear m-width for L_{μ}^{p}-optimality (measure-dependent)

$$
d_{m}^{(p)}(u):=\min _{\operatorname{dim}\left(\mathcal{V}_{m}\right)=m}\left(\int_{\equiv}\left\|u(\xi)-P_{\mathcal{V}_{m}} u(\xi)\right\|_{\mathcal{V}}^{p} \mu(d \xi)\right)^{1 / p}
$$

- For $p=2$, the best rank- m approximation is the truncated singular value decomposition of u and $d_{m}^{(2)}(u)=\left(\sum_{i>m} \sigma_{i}^{2}\right)^{1 / 2}$. Singular value decomposition also known as Karhunen-Loeve decomposition for μ a probability measure.

How to quantify optimal reduction methods?

How fast m-widths go to zero with m ?

- Some general results in approximation theory (usually exploiting smoothness).
- Some finer results for particular cases.

Behaviour of m-widths

Consider the parametric model

$$
\begin{gathered}
-\nabla \cdot(a(x, \xi) \nabla u(\xi))=f \quad \text { in } D \subset \mathbb{R}^{d}, \quad u(\xi)=0 \quad \text { on } \partial D \\
0<\alpha \leq a(x, \xi) \leq \gamma<\infty
\end{gathered}
$$

- A general result.

$$
K=u(\equiv) \subset H_{0}^{1}(D)=\mathcal{V}
$$

If $f \in H^{s-1}(D)$ and $a(\cdot, \xi) \in C^{s}$, then $u(\xi) \in H^{s+1}$ and

$$
d_{m}(K) \lesssim m^{-s / d}
$$

Behaviour of m-widths

- Finer results taking into account the particular parametrization

$$
a(x, \xi)=a_{0}(x)+\sum_{i=1}^{d} a_{i}(x) \xi_{i}, \quad \xi_{i} \in(-1,1)
$$

- $d<\infty$: Exponential convergence of $d_{m}(K)$. Deterioration of the rate with d.
- $d=\infty$: If $\left(\left\|a_{i}\right\|_{\infty}\right)_{i \geq 1} \in \ell_{p}$ with $p<1$, then [Cohen-DeVore-Schwab 2010]

$$
d_{m}(K) \lesssim m^{-1 / p+1}
$$

- Towards general results [DeVore et al 2014]. Considering

$$
\mathcal{A}=\{a(\cdot, \xi): \xi \in \equiv\} \subset C(D)
$$

then

$$
d_{m}(K) \lesssim d_{m}(\mathcal{A})
$$

Behaviour of m-widths: relation with best- m term approximation

- Bounds of m-widths can be obtained from best m-term approximations.
- Let $\left\{\psi_{\alpha}\right\}_{\alpha \in \Lambda}$ be any set of functions. For $\Lambda_{m} \subset \Lambda$, let $\mathcal{S}_{\Lambda_{m}}=\operatorname{span}\left\{\psi_{\alpha}\right\}_{\alpha \in \Lambda_{m}}$.
- We have

$$
d_{m}^{(p)}(u) \leq \inf _{\# \Lambda_{m}=m} \inf _{w \in \mathcal{V} \otimes \mathcal{S}_{\Lambda_{m}}}\|u-w\|_{L_{\mu}^{p}(\equiv ; \mathcal{V})}
$$

that means

$$
d_{m}^{(p)}(u) \leq\left\|u-u \wedge_{\wedge_{m}}\right\|_{L_{\mu}^{p}}(\equiv ; \mathcal{V})
$$

for any m-dimensional subspace $\mathcal{S}_{\Lambda_{m}}$ and any approximations $u_{\Lambda_{m}}$ in $\mathcal{V} \otimes \mathcal{S}_{\Lambda_{m}}$.

- Convergence results for $\left\|u-u_{\wedge_{m}}\right\|_{L_{\mu}}^{p}(\equiv ; \mathcal{V})$ then provide estimates for m-width $d_{m}^{(p)}(u)$.

Outline

(1) Functional framework for parametric and stochastic equations
(2) Tensors
(3) Low-rank approximation of order-two tensors

4 Computing low-rank approximations
(5) Low-rank methods for parametric and stochastic equations

Optimal low-rank approximation in the general case

- In general, best rank- m approximation (provided it exists) can be defined w.r.t. to a certain distance to the solution

$$
\mathcal{E}\left(u, u_{m}\right)=\min _{w \in \mathcal{R}_{m}} \mathcal{E}(u, w)=\min _{\operatorname{dim}\left(\mathcal{V}_{m}\right)=m} \min _{\operatorname{dim}\left(\mathcal{S}_{m}\right)=m} \min _{w \in \mathcal{V}_{m} \otimes \mathcal{S}_{m}} \mathcal{E}(u, w)
$$

- If

$$
\mathcal{E}(u, w) \sim\|u-w\|
$$

then

$$
\left\|u-u_{m}\right\| \lesssim \min _{w \in \mathcal{R}_{m}}\|u-w\|
$$

- \mathcal{R}_{m} is a manifold (not linear space nor convex set) : nonlinear approximation problem.

Computing low-rank approximation in the general case

- In the Hilbert case and if $\mathcal{E}(u, w)=\|u-w\|_{H S}$ (induced canonical norm), then truncated SVD provides optimal low-rank approximations.
- Direct optimization in \mathcal{R}_{m} using
- Alternating minimization algorithms

$$
\begin{aligned}
& \tilde{u}_{m}^{(k)}=\arg \min _{w \in \mathcal{V} \otimes \mathcal{S}_{m}^{(k-1)}} \mathcal{E}(u, w), \quad \mathcal{V}_{m}^{(k)}=U_{1}^{\min }\left(\tilde{u}_{m}^{(k)}\right) \\
& u_{m}^{(k)}=\arg \min _{w \in \mathcal{V}_{m}^{(k)} \otimes \mathcal{S}} \mathcal{E}(u, w), \quad \mathcal{S}_{m}^{(k)}=U_{2}^{\min }\left(u_{m}^{(k)}\right)
\end{aligned}
$$

- other algorithms on manifolds

Computing low-rank approximation in the general case

- Except for the Hilbert case with induced canonical norm $\mathcal{E}(u, w)=\|u-w\|_{H S}$,
- Optimal subspaces are not necessarily nested

$$
\mathcal{V}_{m} \not \subset \mathcal{V}_{m+1}, \quad \mathcal{S}_{m} \not \subset \mathcal{S}_{m+1}
$$

- No notion of decomposition

$$
u_{m}=\sum_{i=1}^{m} v_{i}^{m} \otimes s_{i}^{m}
$$

- Suboptimal approximation using constructive algorithms : greedy construction of approximation or subspaces
- Reduced Basis method (greedy algorithms) and Generalized Empirical Interpolation Method (for $\left.L^{\infty}(\equiv) \otimes \mathcal{V}\right)$
- Proper Generalized Decompositions (for $\left.L^{2}(\equiv) \otimes \mathcal{V}\right)$
- Adaptive Cross Approximation and Empirical Interpolation Method (for $\left.L^{\infty} \otimes L^{\infty}\right)$

Proper Generalized Decomposition

- Greedy construction of the approximation (well-known version of PGD)

Starting from $u_{0}=0$, construction of a sequence $\left\{u_{m}\right\}_{m \geq 1}$ by successive corrections in the "dictionary" of rank-one elements \mathcal{R}_{1} :

$$
\begin{gathered}
\mathcal{E}\left(u, u_{m-1}+v_{m} \otimes s_{m}\right)=\min _{w \in \mathcal{R}_{1}} \mathcal{E}\left(u, u_{m-1}+w\right) \\
u_{m}=\sum_{i=1}^{m} v_{i} \otimes s_{i} \in \mathcal{V}_{m} \otimes \mathcal{S}_{m}, \quad \mathcal{V}_{m}=\operatorname{span}\left\{v_{i}\right\}_{i=1}^{m}, \mathcal{S}_{m}=\operatorname{span}\left\{s_{i}\right\}_{i=1}^{m}
\end{gathered}
$$

- Greedy construction of subspaces (not well known versions of PGD !)
or partially greedy construction of subspaces

$$
\mathcal{E}\left(u, u_{m}\right)=\min _{\substack{\operatorname{dim}_{\mathcal{L}}\left(\mathcal{V}_{m}\right)=m \\ \mathcal{V}_{m} \supset \mathcal{V}_{m-1}}} \min _{w \in \mathcal{V}_{m} \otimes \mathcal{S}} \mathcal{E}(u, w)=\min _{V_{m} \in \mathcal{V}} \min _{\left\{s_{i}\right\}_{i=1}^{m}} \mathcal{E}\left(u, \sum_{i=1}^{m} v_{i} \otimes s_{i}\right)
$$

- Suboptimal greedy construction of subspaces [N. 2008; Tamellini, Le Maitre \& N. 2013, Giraldi 2012] which are very close to the construction used in Empirical Interpolation Method and Greedy algorithms for Reduces Basis methods.
- Suboptimal partial greedy construction of subspaces [N. 2007]

$$
\begin{gathered}
\mathcal{E}\left(u, u_{m-1}+v_{m} \otimes s_{m}\right)=\min _{v \in \mathcal{V}} \min _{s \in \mathcal{S}} \mathcal{E}\left(u, u_{m-1}+v \otimes s\right) \\
\mathcal{E}\left(u, u_{m}\right)=\min _{w \in \mathcal{V}_{m} \otimes \mathcal{S}} \mathcal{E}(u, w), \quad \text { with } \quad \mathcal{V}_{m}=\operatorname{span}\left\{v_{i}\right\}_{i=1}^{m} \\
u_{m}=\sum_{i=1}^{m} v_{i} \otimes s_{i}^{m}
\end{gathered}
$$

Greedy construction of a reduced basis $\left\{v_{1}, \ldots, v_{m}, \ldots\right\}$.
Remark: Convergence results are available but still no a priori estimates.

Outline

(1) Functional framework for parametric and stochastic equations
(2) Tensors
(3) Low-rank approximation of order-two tensors

4 Computing low-rank approximations
(5) Low-rank methods for parametric and stochastic equations

Parametric and stochastic models

$$
\begin{gathered}
u(\xi) \in \mathcal{V}, \quad A(\xi) u(\xi)=f(\xi) \\
\text { with } A(\xi): \mathcal{V} \rightarrow \mathcal{W}^{*} \text { and } f(\xi) \in \mathcal{W}^{*}
\end{gathered}
$$

Tensor structured equations

- Low-rank representations of operator and right-hand side

$$
A(\xi)=\sum_{k=1}^{R} \lambda_{k}(\xi) A_{k}, \quad f(\xi)=\sum_{k=1}^{L} \eta_{k}(\xi) f_{k}
$$

- If no such low-rank representation of operator and right-hand-side (or if R and L are high), preliminary approximation (e.g. using interpolation)

Example

$$
-\nabla \cdot(\kappa(\cdot, \xi) \nabla u)=g(\cdot, \xi) \quad \text { on } \quad D, \quad u=0 \quad \text { on } \quad \partial D
$$

- $\kappa(x, \xi)=\sum_{k=1}^{R} \lambda_{k}(\xi) \kappa_{k}(x), \quad\left\langle A_{k} v, w\right\rangle=\int_{D} \nabla w(x) \cdot \kappa_{k}(x) \cdot \nabla v(x) d x$
- $g(\cdot, \xi)=\sum_{k=1}^{L} \eta_{k}(\xi) g_{k}(x), \quad\left\langle f_{k}, w\right\rangle=\int_{D} g_{k}(x) w(x) d x$
- If κ and g are not of this form, low-rank approximation (e.g. using SVD or Empirical Interpolation method).

Tensor-structured equations for Galerkin approximation

Galerkin approximation of the solution in $\overline{\mathcal{V} \otimes L_{\mu}^{2}(\overline{)}}{ }^{\|\cdot\|_{2}}$ defined by

$$
u \in \mathcal{V} \otimes \mathcal{S}, \quad B(u, w)=F(w) \quad \forall w \in \mathcal{W} \otimes \widetilde{\mathcal{S}}
$$

- Approximation spaces \mathcal{S} and $\widetilde{\mathcal{S}}$ in L_{μ}^{2} (三) (e.g. polynomial chaos). Usually, $\mathcal{S}=\widetilde{\mathcal{S}}$ (Parametric Bubnov-Galerkin).
- $B(v, w)=\mathbb{E}_{\mu}(\langle A(\xi) v(\xi), w(\xi)\rangle)=\int_{\equiv}\langle A(y) v(y), w(y)\rangle \mu(d y)$
- $F(w)=\mathbb{E}_{\mu}(\langle f(\xi), w(\xi)\rangle)=\int_{\equiv}\langle f(y), w(y)\rangle \mu(d y)$
- Corresponding operator equation:

$$
B u=F
$$

with $B: \mathcal{V} \otimes \mathcal{S} \rightarrow(\mathcal{W} \otimes \widetilde{\mathcal{S}})^{*}$ and $F \in(\mathcal{W} \otimes \widetilde{\mathcal{S}})^{*}$ defined by

$$
\langle B u, w\rangle=B(u, w), \quad F(w)=\langle F, w\rangle
$$

Tensor-structured equations for Galerkin approximation

- $\lambda: \equiv \rightarrow \mathbb{R}$ can be identified with an operator $\Lambda: \mathcal{S} \rightarrow \widetilde{\mathcal{S}}^{*}$ such that

$$
\langle\Lambda s, \tilde{s}\rangle=\mathbb{E}_{\mu}(\lambda(\xi) s(\xi) \tilde{s}(\xi))
$$

- $A(\xi)=\sum_{k=1}^{R} \lambda_{k}(\xi) A_{k}$ defines an operator B from $\mathcal{V} \otimes \mathcal{S}$ to $(\mathcal{W} \otimes \widetilde{\mathcal{S}})^{*}$ such that

$$
B=\sum_{k=1}^{R} A_{k} \otimes \Lambda_{k}
$$

- $f(\xi)=\sum_{k=1}^{L} \eta_{k}(\xi) f_{k}$ defines a tensor $F \in(\mathcal{W} \otimes \widetilde{\mathcal{S}})^{*}$ such that

$$
F=\sum_{k=1}^{L} f_{k} \otimes \eta_{k}
$$

- Tensor structured equation

$$
u \in \mathcal{V} \otimes \mathcal{S}, \quad B u=F \quad \Longleftrightarrow \quad\left(\sum_{k=1}^{R} A_{k} \otimes \Lambda_{k}\right) u=\sum_{k=1}^{L} f_{k} \otimes \eta_{k}
$$

- For $\left\{\Phi_{i}\right\}_{i=1}^{M}$ and $\left\{\Psi_{i}\right\}_{i=1}^{M}$ bases of \mathcal{S} and $\widetilde{\mathcal{S}}$, algebraic representation of Λ :

$$
\boldsymbol{\Lambda} \in \mathbb{R}^{M \times M}, \quad(\Lambda)_{i j}=\left\langle\Lambda \Phi_{j}, \Psi_{i}\right\rangle=\mathbb{E}_{\mu}\left(\lambda(\xi) \Phi_{j}(\xi) \Psi_{i}(\xi)\right)
$$

- $u \in \mathcal{V} \otimes \mathcal{S}$ identified with a tensor $\mathbf{u} \in \mathbb{R}^{N} \otimes \mathbb{R}^{M}$ such that

$$
u=\sum_{i=1}^{N} \sum_{j=1}^{M}(\mathbf{u})_{i j} \varphi_{i} \otimes \Phi_{j}
$$

- Tensor structured equation in algebraic form

$$
\mathbf{u} \in \mathbb{R}^{N} \otimes \mathbb{R}^{M}, \quad \mathbf{B u}=\mathbf{F} \quad \Longleftrightarrow \quad\left(\sum_{k=1}^{R} \mathbf{A}_{k} \otimes \boldsymbol{\Lambda}_{k}\right) \mathbf{u}=\sum_{k=1}^{L} \mathbf{f}_{k} \otimes \boldsymbol{\eta}_{k}
$$

Classical iterative methods with low-rank truncations

- Equation in tensor format

$$
B u=F
$$

- Iterative solver (Richardson, Gradient...)

$$
u^{(k)}=T\left(u^{(k-1)}\right) \quad(T: \text { iteration map })
$$

For example

$$
u^{(k)}=u^{(k-1)}-\alpha\left(B u^{(k-1)}-F\right)
$$

- Approximate iterations using low-rank truncations:

$$
u^{(k)} \in \mathcal{R}_{m(\epsilon)} \quad \text { such that } \quad\left\|u^{(k)}-T\left(u^{(k-1)}\right)\right\| \leq \epsilon
$$

- For the canonical norm $\|\cdot\|$, truncation based on SVD
- Computational requirements: low-rank algebra and efficient SVD algorithms.
- Analysis : perturbation of algorithms.

Minimal residual low-rank approximation

- Tensor structured equation

$$
B u=F
$$

- Residual-based error

$$
\mathcal{E}(u, w)=\|B w-F\|_{C}=\|w-u\|_{B^{*} C B}
$$

with a certain residual norm $\|\cdot\|_{C}^{2}=\langle C \cdot, \cdot\rangle$.

- Best rank- m approximation

$$
\mathcal{E}\left(u, u_{m}\right)=\min _{w \in \mathcal{R}_{m}} \mathcal{E}(u, w)
$$

Remark: another residual-based error

$$
\mathcal{E}(u, w)^{2}=\mathbb{E}_{\mu}\left(\|A(\xi) w(\xi)-f(\xi)\|_{D(\xi)}^{2}\right)=\mathbb{E}_{\mu}\left(\|w(\xi)-u(\xi)\|_{A(\xi)^{*} D(\xi) A(\xi)}^{2}\right)
$$

with a certain residual norm $\|\cdot\|_{D(\xi)}$ on \mathcal{W}^{*}. For symmetric problems and $D(\xi)=A(\xi)^{-1}$, it yields $\mathcal{E}(u, w)=\|B w-F\|_{B^{-1}}$.

- Assuming $\tilde{\alpha}\|w\| \leq\|w\|_{B^{*} C B} \leq \tilde{\gamma}\|w\|$, then quasi-optimal approximation:

$$
\left\|u-u_{m}\right\| \leq \frac{1}{\tilde{\alpha}}\left\|B u_{m}-F\right\|_{C}=\frac{1}{\tilde{\alpha}} \min _{w \in \mathcal{R}_{m}}\|B w-F\|_{C} \leq \frac{\tilde{\gamma}}{\tilde{\alpha}} \min _{w \in \mathcal{R}_{m}}\|u-w\|
$$

- Importance of well-conditioned formulations, with $\frac{\tilde{\gamma}}{\tilde{\alpha}} \approx 1$.
- Construction of preconditioners in low-rank format [Giraldi-Nouy-Legrain 2014]
- Goal-oriented approach by choosing C such that

$$
\|B w-F\|_{C}=\|w-u\|_{\star}
$$

where $\|\cdot\|_{\star}$ is a norm constructed by taking into account the objective of the computation [Billaud-Nouy-Zahm 2014]

Low-rank approximation using sampling-based approach

- We want to compute an approximation of the solution $u(\xi)$, and then a variable of interest $s(u(\xi) ; \xi)$, for a collection of samples

$$
\left\{\xi^{k}\right\}_{k=1}^{K}=\Xi_{\kappa}
$$

- The computation of

$$
u\left(\xi^{k}\right)=A\left(\xi^{k}\right)^{-1} f\left(\xi^{k}\right) \quad \text { for all } \quad k=1, \ldots, K
$$

is unaffordable.

- Use of low-rank approximations ?

Low-rank approximation using sampling-based approach

- For samples $\left\{\xi^{k}\right\}_{k=1}^{K}=\Xi_{K} \subset \equiv$, we introduce the sample-based semi-norm

$$
\|u\|_{2, K}=\left(K^{-1} \sum_{k=1}^{K}\left\|u\left(\xi^{k}\right)\right\|_{\nu}^{2}\right)^{1 / 2}
$$

- The best rank-m approximation u_{m} which solves

$$
\min _{w \in \mathcal{R}_{m}}\|u-w\|_{2, K}^{2}=\min _{w \in \mathcal{R}_{m}} \frac{1}{K} \sum_{k=1}^{K}\left\|u\left(\xi^{k}\right)-w\left(\xi^{k}\right)\right\|_{\mathcal{V}}^{2}
$$

corresponds to the truncated singular value decomposition of the tensor

$$
\mathbf{u}=\left\{u\left(\xi^{k}\right)\right\}_{k=1}^{K} \in \mathcal{V}^{K}=\mathcal{V} \otimes \mathbb{R}^{K}
$$

also known as Empirical Karhunen-Loeve decomposition.

- Requires the solution of K independent problems (Black box simulations)

$$
u\left(\xi^{k}\right)=A\left(\xi^{k}\right)^{-1} f\left(\xi^{k}\right), \quad k=1, \ldots, K
$$

- First idea: Compute K samples of the solution, extract an optimal reduced basis for the samples using empirical $K L$, project the initial model on this basis (POD-like approach)

Low-rank approximation using sampling-based approach

- Second idea: Residual based approach

$$
\mathcal{E}(u, w)^{2}=\frac{1}{K} \sum_{k=1}^{K}\left\|A\left(\xi^{k}\right) w\left(\xi^{k}\right)-f\left(\xi^{k}\right)\right\|_{D\left(\xi^{k}\right)}^{2}=\|w-u\|_{\tilde{A}, 2, K}^{2}
$$

Denoting $\widehat{\mathbb{E}}_{\mu}^{K}(f(\xi))=\frac{1}{K} \sum_{k=1}^{K} f\left(\xi^{k}\right)$,

$$
\mathcal{E}(u, w)^{2}=\widehat{\mathbb{E}}_{\mu}^{K}\left(\|A(\xi) w(\xi)-f(\xi)\|_{D(\xi)}^{2}\right)
$$

- Best rank- m approximation defined by

$$
\mathcal{E}\left(u, u_{m}\right)=\min _{w \in \mathcal{R}_{m}} \mathcal{E}(u, w)
$$

- $\|\cdot\|_{\tilde{A}, 2, K}^{2}$ defines on $\mathcal{V} \otimes \mathbb{R}^{K}$ a norm which is equivalent to $\|\cdot\|_{2, K}$ and

$$
\left\|u-u_{m}\right\|_{2, K} \leq \frac{\tilde{\gamma}}{\tilde{\alpha}} \min _{v \in \mathcal{R}_{m}}\|u-v\|_{2, K}
$$

Low-rank approximation using sampling-based approach

- Set of equations

$$
A(\xi) u(\xi)=f(\xi), \quad \xi \in \Xi_{\kappa}
$$

with

$$
A(\xi)=\sum_{i=1}^{R} A_{i} \lambda_{i}(\xi), \quad f(\xi)=\sum_{i=1}^{L} f_{i} \eta_{i}(\xi)
$$

- (\square) identified with

$$
\mathbf{B u}=\mathbf{F}
$$

with

$$
\begin{gathered}
\mathbf{B}=\sum_{i=1}^{R} \boldsymbol{A}_{i} \otimes \boldsymbol{\Lambda}_{i}, \quad \boldsymbol{\Lambda}_{i}=\operatorname{diag}\left(\lambda_{i}\left(\xi^{1}\right), \ldots, \lambda_{i}\left(\xi^{K}\right)\right) \in \mathbb{R}^{K \times K} \\
\mathbf{F}=\sum_{i=1}^{L} f_{i} \boldsymbol{\eta}_{i}, \quad \boldsymbol{\eta}_{i}=\left(\eta_{i}\left(\xi^{1}\right), \ldots, \eta_{i}\left(\xi^{K}\right)\right)^{T} \in \mathbb{R}^{K}
\end{gathered}
$$

Computing optimal low-rank approximation

- We have seen different ways of defining a low-rank approximation u_{m} by minimization a certain distance $\mathcal{E}\left(u, u_{m}\right)$ to the solution:

$$
\mathcal{E}\left(u, u_{m}\right)=\min _{v \in \mathcal{R}_{m}} \mathcal{E}(u, v)
$$

- \mathcal{R}_{m} is a manifold (not linear space nor convex set) : nonlinear approximation problem.
- Optimization in \mathcal{R}_{m} using alternating direction algorithms or other optimization algorithms on manifolds.
- Suboptimal approximation using constructive algorithms: greedy construction of approximation or subspaces, e.g. Proper Generalized Decomposition

PGD algorithm in practice

- Ideal rank- m approximation u_{m} defined by

$$
\mathcal{E}\left(u, u_{m}\right)=\min _{w \in \mathcal{R}_{m}} \mathcal{E}(u, w)=\min _{\operatorname{dim}\left(\mathcal{V}_{m}\right)=m} \min _{w \in \mathcal{V}_{m} \otimes \mathcal{S}} \mathcal{E}(u, w)
$$

- Supoptimal greedy construction of subspaces \mathcal{V}_{m} : Starting from $\mathcal{V}_{0}=0$, we define a sequence of rank- m approximations u_{m} by

$$
\mathcal{E}\left(u, u_{m}\right)=\min _{\substack{\operatorname{dim}_{\left.\mathcal{V}_{m} \supset \mathcal{V}_{m}\right)=m}\left(\mathcal{V}_{m-1}\right.}} \min _{w \in \mathcal{V}_{m} \otimes \mathcal{S}} \mathcal{E}(u, w)
$$

Denoting $u_{m}=\sum_{i=1}^{m} v_{i} \otimes s_{i}^{m}$, we have

$$
\begin{equation*}
\mathcal{E}\left(u, \sum_{i=1}^{m} v_{i} \otimes s_{i}^{m}\right)=\min _{v_{m} \in \mathcal{V}} \min _{\left(s_{1}, \ldots, s_{m}\right) \in \mathcal{S}^{m}} \mathcal{E}\left(u, \sum_{i=1}^{m} v_{i} \otimes s_{i}\right) \tag{5}
\end{equation*}
$$

- Alternating minimization algorithm for solving (5): solve successively

$$
\begin{align*}
& \min _{v_{m} \in \mathcal{V}} \mathcal{E}\left(u, \sum_{i=1}^{m} v_{i} \otimes s_{i}\right)^{2}, \tag{6}\\
& \min _{\left(s_{1}, \ldots, s_{m}\right) \in \mathcal{S}^{m}} \mathcal{E}\left(u, \sum_{i=1}^{m} v_{i} \otimes s_{i}\right)^{2} \tag{7}
\end{align*}
$$

- Consider a symmetric problem, and let

$$
\mathcal{E}(u, w)^{2}=\|B w-F\|_{B^{-1}}^{2}=\langle B w-F, w-u\rangle=\mathbb{E}_{\mu}(\langle A(\xi) w(\xi)-f(\xi), w(\xi)-u(\xi)\rangle)
$$

- Solution of (6) (non parametric problem):

$$
\min _{v_{m} \in \mathcal{V}}\left\|B \sum_{i=1}^{m} v_{i} \otimes s_{i}-F\right\|_{B^{-1}}^{2} \quad \Leftrightarrow \quad\left\langle B \sum_{i=1}^{m} v_{i} \otimes s_{i}-F, \tilde{v} \otimes s_{m}\right\rangle=0 \quad \forall \tilde{v} \in \mathcal{V}
$$

which yields

$$
\widehat{A}_{m m} v_{m}=\widehat{f}_{m}-\sum_{i=1}^{m-1} \widehat{A}_{m i} v_{i}
$$

with

$$
\begin{gathered}
\widehat{A}_{m i}=\mathbb{E}_{\mu}\left(A(\xi) s_{m}(\xi) s_{i}(\xi)\right)=\sum_{k=1}^{R} A_{k} \widehat{\lambda}_{k, m, i}, \quad \widehat{\lambda}_{k, m, i}=\mathbb{E}_{\mu}\left(\lambda_{k}(\xi) s_{m}(\xi) s_{i}(\xi)\right) \\
\widehat{f}_{m}=\mathbb{E}_{\mu}\left(f(\xi) s_{m}(\xi)\right)=\sum_{k=1}^{L} f_{k} \widehat{\eta}_{k, m}, \quad \widehat{\eta}_{k, m}=\mathbb{E}_{\mu}\left(\eta_{k}(\xi) s_{m}(\xi)\right)
\end{gathered}
$$

- $\widehat{A}_{m i}$ is an evaluation of $A(\xi)=\sum_{k=1}^{R} A_{k} \lambda_{k}(\xi)$ for particular values of the λ_{k}.
- \widehat{f}_{m} is an evaluation of $f(\xi)=\sum_{k=1}^{L} f_{k} \eta_{k}(\xi)$ for particular values of the η_{k}.
- It looks like a sampling approach but it is not! (no sampling of ξ)

Example 1

$$
\langle A(\xi) v, w\rangle=\int_{D} \nabla w(x) \cdot \kappa(x, \xi) \cdot \nabla v(x) d x, \quad\langle f(\xi), w\rangle=\int_{D} g(x, \xi) w(x) d x
$$

- $\left\langle\widehat{A}_{m i} v, w\right\rangle=\int_{D} \nabla w(x) \cdot \widehat{\kappa}_{m i} \cdot \nabla v(x) d x \quad$ with $\quad \widehat{\kappa}_{m i}(x)=\mathbb{E}_{\mu}\left(\kappa(x, \xi) s_{m}(\xi) s_{i}(\xi)\right)$
- $\left\langle\widehat{f}_{m}, w\right\rangle=\int_{D} \widehat{g}_{m}(x) w(x) d x$ with $\widehat{g}_{m}(x)=\mathbb{E}_{\mu}\left(g(x, \xi) s_{m}(\xi)\right)$
- Solution of (7) (reduced order parametric problem):

$$
\min _{\left(s_{1}, \ldots, s_{m}\right) \in \mathcal{S}^{m}}\left\|B \sum_{i=1}^{m} v_{i} \otimes s_{i}-F\right\|_{B^{-1}}^{2}
$$

Denoting $\mathbf{s}=\left(s_{i}\right)_{i=1}^{m} \in(\mathcal{S})^{m}$, it yields

$$
\begin{equation*}
\mathbb{E}_{\mu}\left(\mathbf{t}(\xi)^{T} \mathbf{A}_{m}(\xi) \mathbf{s}(\xi)\right)=\mathbb{E}_{\mu}\left(\mathbf{t}(\xi)^{T} \mathbf{f}_{m}(\xi)\right) \quad \forall \mathbf{t} \in(\mathcal{S})^{m} \tag{8}
\end{equation*}
$$

with reduced parametrized matrix and vector

$$
\left(\mathbf{A}_{m}(\xi)\right)_{i j}=\left\langle A(\xi) v_{j}, v_{i}\right\rangle, \quad\left(\mathbf{f}_{m}(\xi)\right)_{i}=\left\langle f(\xi), v_{i}\right\rangle
$$

Solution $\mathbf{s}(\xi)$ of (8) is the stochastic Galerkin approximation of the solution of

$$
\begin{equation*}
\mathbf{A}_{m}(\xi) \mathbf{s}(\xi)=\mathbf{f}_{m}(\xi) \tag{9}
\end{equation*}
$$

- Using low-rank (affine) representations of $A(\xi)$ and $f(\xi)$, we obtain

$$
\mathbf{A}_{m}(\xi)=\sum_{k=1}^{R} \mathbf{A}_{m, k} \lambda_{k}(\xi), \quad \mathbf{f}_{m}(\xi)=\sum_{k=1}^{L} \mathbf{f}_{m, k} \eta_{k}(\xi)
$$

- (8) is a system of $m \times \operatorname{dim}(\mathcal{S})$ equations. If $\operatorname{dim}(\mathcal{S}) \gg 1$, structured approximation in \mathcal{S} can be used to reduce the cost (sparsity, low-rank...).
- (9) can be solved with sampling-based approaches (interpolation, regularized least-squares...)

Example: stochastic Groundwater flow equation (MOMAS/Couplex)

Groundwater flow equation (hydraulic head u)

$$
-\nabla(\kappa(x, \xi) \nabla u)=0 \quad x \in \Omega, \xi \in \equiv
$$

+ boundary conditions

Geological layers with uncertain properties

	κ 's probability laws	
- Limestone	Layer	Law
	Dogger	$L U(5,125)$
	Clay	$L U\left(3.10^{-7}, 3.10^{-5}\right)$
	Limestone	$\operatorname{LU}(1.2,30)$
	Marl	$L U\left(10^{-5}, 10^{-4}\right)$

10 basic uniform random variables ξ, $\equiv=(-1,1)^{10}$, uniform probability P_{ξ}

Uncertain BCs

Neumann homogeneous
Dirichlet

	Law
u_{1}	$U(288,290)$
u_{2}	$U(305,315)$
u_{3}	$U(330,350)$
u_{4}	$U(170,190)$
u_{5}	$U(195,205)$
u_{6}	$U(285,287)$

First modes with the greedy construction of the approximation

Spatial modes $\left\{v_{1}, \ldots, v_{8}\right\}$

Stochastic modes $\left\{s_{1}, \ldots, s_{8}\right\}$: pdf

Convergence of the progressive PGD (L^{2}-norm $)$

$$
\left\|u-u_{m}\right\|_{L^{2}(\Omega \times \equiv)}
$$

PGD based on Galerkin orthogonality criteria

- Approximation u_{m} in a subset \mathcal{M}_{m}
- For symmetric problems

$$
\left\|B u_{m}-F\right\|_{B-1}^{2}=\min _{w \in \mathcal{M}_{m}}\|B w-F\|_{B^{-1}}^{2}=\min _{w \in \mathcal{M}_{m}}\langle B w-F, w-u\rangle
$$

Necessary (but not sufficient) condition of optimality

$$
\begin{equation*}
\left\langle B u_{m}-F, \delta w\right\rangle=0 \quad \forall \delta w \in T_{u_{m}} \mathcal{M}_{m} \tag{10}
\end{equation*}
$$

where $T_{u_{m}} \mathcal{M}_{m}$ is the tangent space to \mathcal{M}_{m} at u_{m}.

- For more general problems (provided $B: \mathcal{V} \otimes \mathcal{S} \rightarrow(\mathcal{V} \otimes \mathcal{S})^{*}$), search u_{m} in \mathcal{M}_{m} such that it verifies (10).
- Alternating direction algorithms yields problems with the same structure as previously.
- Heuristic approach. No theoretical results except for particular cases.

Application to an advection-diffusion-reaction equation

- $\partial_{t} u-a_{1} \Delta u+a_{2} c \cdot \nabla u+a_{3} u=a_{4} \Omega_{\Omega_{1}}$ on $\Omega \times(0, T)$
- $u=0$ on $\Omega \times\{0\}$
- $u=0$ on $\partial \Omega \times(0, T)$

Uncertain parameters

$$
a_{i}(\xi)=\mu_{a_{i}}\left(1+0.2 \xi_{i}\right), \quad \xi_{i} \in U(-1,1), \quad \equiv=(-1,1)^{4}
$$

Three samples of the solution $u(x, t, \xi)$

Partial greedy construction of subspaces \mathcal{V}_{m} with Arnoldi-type construction

8 first modes of the decomposition $\left\{v_{1}(x, t) \ldots v_{8}(x, t)\right\}$

To compute these modes \Rightarrow only 8 deterministic problems

Convergence of quantities of interest

Probability density function

Quantity of interest

$$
s(\xi)=\int_{0}^{T} \int_{\Omega_{2}} u(x, t, \xi) d x d t
$$

$s_{m}(\xi)=\int_{0}^{T} \int_{\Omega_{2}} u_{m}(x, t, \xi) d x d t$

Probability density function of $s_{m}(\xi)$

$$
m=1
$$

$$
m=2
$$

$m=8$
7×10^{5}

Convergence of quantities of interest Quantiles

99% Quantiles of $s_{m}(t, \boldsymbol{\xi})$
Quantity of interest $s(t, \boldsymbol{\xi})=\int_{\Omega_{2}} u(x, t, \boldsymbol{\xi}) d x$

$s_{m}(t, \boldsymbol{\xi})=\int_{\Omega_{2}} u_{m}(x, t, \boldsymbol{\xi}) d x$

$$
m=1
$$

In summary

- Linear methods for order reduction yield an approximation of the form

$$
u_{m}(\xi)=\sum_{i=1}^{m} v_{i} s_{i}(\xi)
$$

with $v_{i} \in \mathcal{V}$ and $s_{i} \in L_{\mu}^{p}(\equiv)$, which is an element of rank m in $\mathcal{V} \otimes L_{\mu}^{p}(\equiv)$

- Optimal linear order reduction methods are related with optimal low-rank approximation.
- Efficient solution methods exploiting low-rank formats
- Extension of these ideas to higher order tensor spaces ? Application to high-dimensional approximation...

References I

- PROJECTION-BASED MODEL REDUCTION

A. Nouy. Low-rank tensor approximation methods and Proper Generalized Decompositions. Book Chapter. Preprint.

A.T. Patera and G. Rozza. Reduced Basis Approximation and A-Posteriori Error Estimation for Parametrized PDEs. MIT-Pappalardo Graduate Monographs in Mechanical Engineering, 2007.
A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approximation for parametrized partial differential equations and applications. Journal of Mathematics in Industry, 1(1), 2011.
A. Nouy. A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Computer Methods in Applied Mechanics and Engineering, 199(23-24):1603-1626, 2010.

- STOCHASTIC SPECTRAL METHODS, GALERKIN METHODS
O. P. Le Maitre and O. M. Knio. Spectral Methods for Uncertainty Quantification With Applications to Computational Fluid Dynamics. Scientific Computation. 2010.
冨
A. Nouy. Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Archives of Computational Methods in Engineering, 16(3):251-285, 2009.

References II

- TENSORS, OPERATORS

A. Defant and K. Floret.

Tensor norms and operator ideals.
North-Holland, Amsterdam New York, 1993.W. Hackbusch.

Tensor spaces and numerical tensor calculus, volume 42 of Springer series in computational mathematics.
Springer, Heidelberg, 2012.

