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Stochastic and parametric analyses

Stochastic or parametric model

u:=—Y suchthat F(u(§);§) =0

where £ are parameters or random variables taking values in a measure space (=, p).

@ Forward problem: given u, compute a variable of interest

s(§) = g(u(£): €)

and quantities of interest (statistical moments, probability of events, sensitivity
indices...).
@ Inverse problem: given observations of s(&), determine £ or estimate u.

e Optimization: minimize objective function s() over &.
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Stochastic and parametric analyses

Ideal approach

Compute an accurate approximation of u(§) (metamodel, reduced order model, surrogate
model...) that allows fast evaluations of output variables of interest, observables, or
objective function.
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Complexity issues

e Complex numerical models (Part 1)
ul@ev, Fu):g=0
dim(V) > 1
e Limit the number of point evaluations

o Remedy: projection-based model reduction, approximation of u(§) in a
low-dimensional subspace (or manifold) of V

@ Approximation of multivariate functions (Part 2)

u(ér, - -, &)
d > 1 (possibly d = c0)

o Classical approaches suffer from the curse of dimensionality
e Remedy: adapted bases, structured approximations
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A model example

Diffusion equations with random diffusion coefficient x(x,w):

—V - (kVu)=f + boundary conditions

o Groundwater flow (Nuclear Waste Disposal Simulation : Couplex)

K(x,w) = Z &i(w)lp; (x)

Dogger

I Ciay

I Limestone o

— 7 Layer Probability Law
D; : Dogger & ~ LU(5,125)
D, : Clay & ~ LU(3.1077,3.107°)
Ds : Limestone &3 ~ LU(1.2,30)
D, : Marl & ~ LU(107%,107%)

3D problem requiring fine discretization : dim(V) > 1
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@ Random media with spatially correlated random fields

d
r(x,w) = 85(x) +exp(g(x) + Y Voigi(x)éi(w)), d>1

i=1




Outline

@ Functional framework for parametric and stochastic equations
© Tensors

e Low-rank approximation of order-two tensors

o Computing low-rank approximations

e Low-rank methods for parametric and stochastic equations
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Notations, definitions

& : parameters or vector-valued random variable with probability law p.
e = C RY: range of ¢ (parameter set)
@ 1 : finite measure on =

@ Bochner space Lf(Z;V), the set of Bochner measurable functions v defined on a

measure space (=, 1) with values in a Banach space (V, || - ||v), with bounded norm
1/p
lall = ([ 191 utee)) (1<p <o)
or [l = esssup Ju(©)]» (p = )

o Lebesgue space Lf(Z) = LL (= R)

o E,(v(§)) = Jz v(y)u(dy) (expectation)

@ For X a normed vector space, X’ denotes the algebraic dual of X and X* denotes
the topological dual of X.
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Abstract formulation of a class of linear problems

Parametric (or stochastic) strong form

Find u(§) € V such that it holds p-almost surely
a(u(€),w;&) =f(w;&) Ywew

with a(-, ;&) : V x W — R a bilinear form and f(+;£) : W — R a continuous linear form.

Assumptions on bilinear form a(-, ;&) : V x W — R
@ Uniformly continuous
a(v, w;
sup sup _alv,wi&) =) << o0
vevwew [lvllv|lw|lw

@ Uniformly weakly coercive

inf sup _alv,wi&) =off) > a.>0
veVwew [lvlvilwllw

Vw e W\ {0}, supa(v,w)>0
vey
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Examples

Example 1: diffusion equation with random diffusion coefficient

=V - (k(,§)Vu) =g(-,§) on D, u=0 on 09D

o a(u,w;&) = /D Vw(x) - k(x,§) - Vu(x)dx, f(w;&)= /Dg(x,.f)w(x) dx

Approximation space V C Hg(D), W = V.
o < K(x,&) < v, for almost all x and &.
g(-¢€) € L*(Q).
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Examples

Example 2: evolution equation

Ou—V-(kVu)=g onD x|/
u=up(-,§)on Dx{0}, wu=0 ondD x I

e V C L*(I; H3(D)) N H*(I; L*(D)) equipped with norm

Iviip = ||V||i2(/;H3(D)) + HVH%-H(I;LZ(D))'
e W =W x W> C L?(I; H}(D)) x L*>(D) equipped with norm
Iwlidy = HW1||i2(/;H&(D)) + HW2H%2(D)'

@ Bilinear and linear forms

a(v,w; &) = %Wl-‘r/ n(-,&)Vv~VW1+/ v(,0)ws,
DxI DxI1 D
(i) = [ et me+ [ wl. .

o Assume & < k(x,€) < .
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Examples

Example 3 : diffusion equation on a random domain

—AU(x,8) = g(x) for x e D(), U(x,6) =0 for x € dD(§)

@ Assume ¢(+; &) : Do — D(€) is a diffeomorphism from a deterministic domain Dg to
D(¢).

@ Change of variable u(xo, &) = U(¢(x0,§),€), xo € Do.

o Bilinear form a(u, w; §) = fDo Vw(x) - K(x0,€) - Vu(xo) dxo, with
K = VoVoT| det(Vo)|

@ Linear form f(w; &) = fD go(x0,&)w(xo)dxo, with
g0, ) = £(6(x0,£))] det(Vo (0, €))|

@ Assumption on the diffeomorphism

&ll¢ll2 < 1Ve(x0, €)Cll2 < BliCll2
@ Approximation u € V C H3(Do), W = V.
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Operator equation and algebraic form

@ Corresponding operator equation

A(§)u(€) = f(£)
A(€):V = W" such that a(v,w;€&) = (A(&)v, w)
f(€) e W* such that f(w; &) = (f(£), w)
o Operator A(&) : V — W™ is an isomorphism such that

a(QlIviv < [JAG)vIw < v(€)lIvilv

o Given bases {;}Y; and {¢}; of V and W, algebraic formulation
u(€) € RY, A(©u(é) = f(¢)
with (A())s = (Ags, ¢1), (F(€))i = (F(£), &), and u(€) = 2, (u(€))jes-
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Regularity of the solution

@ Regularity of the solution

lu(©)llv < %Hf(ﬁ)nw*

If a(€) > v >0,

lulle = Eu(llu(€)I5)P < Bu(—5 IF©)I150-)"? < *Hf\lp

a(&)f’
If f € LB (Z;W*), then
ue lf(ZV)

e For ao, = 0 and/or 7. = 0o, see L3 [Mugler-Starkloff 2011, Charrier 2012, Nouy-Soize
2014]

@ From now on, assume
2 (=.
ue l3(Z;V)
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Stochastic (or parametric) weak form

If u(§) satisfies almost surely
A)u(€) = (&)

then for all (measurable) functions w : = — W

E.((A(§)u(§), w(§))) = En((f(£), w(§)))
or
B(u,w) = F(w)
with
B(v,w) =E.((A()v(§), w(§))) = /(A(Y)V(YLW(Y))H(dY)

F(w) = E.((f(¢), w(¢))) = /(f(y)’ w(y))u(dy)

Weak formulation

Find u € X such that
B(u,w) = F(w) VweyY

Anthony Nouy Ecole Centrale Nantes
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Stochatic (or parametric) weak form

Let
2 (— 2 f—
X=L,(ZV), Y=L((E=W)
Under previous assumptions on A(¢), we deduce the following properties.
Properties of bilinear form B: X x Y — R

o Continuous B
supsupM < s < 00
vexwey |[VIxlIwlly

o Weakly coercive

. B(v,w)
inf sup———— > a, >0 2
v ey Tviixlwlly @
°
Vw € X\ {0}, supB(v,w)>0 (3)
veyY

Recall that (2) and (3) are satisfied if B : X x X — R is coercive :

inf B(V’2V)
vex [Iviix

>a,>0
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Parametric (or stochastic) weak form

Theorem

If F € Y* = L2,(Z;W"), there exists a unique solution u € X = L>,(=; V) to problem (1)
and

1
llullx < —IIF[ly=
Oy

Anthony Nouy Ecole Centrale Nantes 18



Galerkin methods

@ Introduce approximation spaces

@ Galerkin approximation defined by

u, € X, such that

Anthony Nouy

X C X
Y, CY

B(un, wn) = F(wn) Yw, €Y,

Ecole Centrale Nantes
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Galerkin methods

@ Assume uniform stability of approximation spaces

. B

inf sup _B(un, wn) > o (4)
un €% woeY, [ Unllx [[wally

In particular, (4) is satisfied

e if B is coercive and X, = Y.
o if Vo= {wn(€) = Ry A(E)Va(€) : v € Xn} with Ryy the Riesz map from W to
W*.

@ Quasi-optimality

ia

lu—=un||x < Cinf |lu—v]|x| with C=1+
veXy (o7

The analysis of the best approximation error inf,cx, ||u — v||x requires extra
information on approximation spaces and the solution u (regularity).

o Convergence: For an increasing sequence of approximation spaces X, C X,11 such
that [ J,~; X» is dense in X, then ||u — un|| — 0 when n — oo.

o Stability: For u, and u, Galerkin approximations of u and ', then

lun — upllx < 2 lu - u'||x
Ol
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Galerkin methods

@ What are the classical choices for approximation spaces X, ?

e Projection-based model reduction
=V, ® L4(3) = {Z visi(€) s € L (3)}

e Stochastic Galerkin methods

j=1

@ How does the best approximation inf,ex, ||u — v||x behaves for these approximation
spaces ?

@ Can we characterize and compute optimal approximation spaces V, and S,
with optimal low-rank approximation...

. relation

Ecole Centrale Nantes 21
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Tensor spaces

@ Let V and S two vector spaces. The algebraic tensor space V ® S is the set of

elements of the form
m
Z Vi ® S;
i=1

with vy € V, 5, €S, and me N.
@ A tensor Banach space is obtained by the completion of the algebraic tensor space
YV ® S with respect to a norm || - ||:

Ve, S=vas
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Examples of finite dimensional tensor spaces

@ Matrices

@ Finite dimensional tensor spaces
ves=vas'

Denoting {¢;}"; a basis of V and {t;}}; a basis of S, 1 € V ® S can be written

M

U:ZZHU@@%

i=1 j=1

and identified with
aecRYoRY
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Bochner spaces

@ The Bochner space L(Z;V) is the set of Bochner measurable functions u defined

on a measure space (=, 1) with values in a Banach space (V, || - ||v), with bounded
norm
1/p
lall = ([ 1u@lgne9)) (1<p <o)
or |[ullec = ess sup llu(€)llv (p=o0)
€=

@ An element u € Lf(Z) ® V is of the form

= (Z s ® Vi) &)= Zsi(i)Vi, fe=.

o Case 1 < p < o0.

eV ==y
e Case p=o0
EEev '™ crrEy)
with equality if V is a Hilbert space or if p is a discrete measure with finite support
Zv={&M, u= > cez,, O¢ then L7(Z) ~ RM and
LLEV)=LAE) oV =R"eV
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Tensor norms

We consider that V and S are normed spaces equipped with norms || - ||v and || - ||s.

@ A necessary condition for a norm || - || on ¥V ® S is the continuity of the tensor
product map ® : V x § — V ® S, that means the existence of C such that

[ve sl < Cliviivlslls

A norm || - || is called a crossnorm if
lves| =lvivisls

This property does not define a norm on the whole algebraic space V ® S.

Norms || - || on V ® S can be completely defined from the norms || - ||y and || - ||s.
These are called canonical or induced norms.
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Projective norm

@ For u e V® S, the projective norm is defined by

m m
ull» = inf {Z vilvlisills :u=> vi® Si}
i=1 i=1

where the infimum is taken over all representations of u.

@ The projective norm is stronger than any norm || - || making continuous the tensor
product map ® : V x § — V ® S, that means

1S 1a

so that
V®IHI/\ S C V®”.H S
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Dual spaces

@ For X a normed vector space, X’ denotes the algebraic dual of X and X* denotes
the topological dual of X. We denote by || - ||x the dual norm to || - ||x, defined for
@ € X" by [lelx = sup{e(x) : x € X, [[x|[x = 1}.

@ For p eV and ¢ € S’, an element p ® 1) € V' ® S’ can be seen as a linear form on
Y ® S via the definition

(p@P)(ves)=p(v)i(s)
so that
V'S cVesScihyVes)
@ Anorm || -] on V® S allows to define a dual space (V ® S§)* equipped with a dual
norm denoted || - ||*.

@ If || - || is such that the tensor product map ® : V* x 8" — V* ® §* is continuous,
that means

e @ylI" < Cllellvllvlls

for some constant C, then
V'S c(Ves)”

@ A crossnorm || - || such that || - || is also a crossnorm is called a reasonable
crossnorm. The projective norm is a reasonable crossnorm.

Anthony Nouy Ecole Centrale Nantes 28



Injective norm

@ For u € V® S, the injective norm is defined by
Jullv = sup{(p @ ¥)(u) : o € V", 9 € S7, [l¢llv = [[¥lls = 1}

@ The injective norm is a reasonable crossnorm.

@ The injective norm is weaker than any other norm || - || making the tensor product
map ® : V* X §* — V* ® 8" continuous, that means

[ 1P [V € I (R [ 9

so that
VR sScve, s
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Hilbert tensor space

@ Assume that V and S are Hilbert spaces equipped with inner products (-, -)y and
<'7'>5'
@ A canonical inner product (-,-) can be defined for v,7 € V and 5,5 € S by
(vs, V3 =(v,?)v(s,3)s

and extended by linearity to V® S.

@ The associated norm || - || is a reasonable crossnorm.
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Relation with operators

@ Assume that V is a Hilbert space.

o u= 2:11 vi®si € V®S can be identified with a linear operator from V to S such
that for v e V

m

u(v) = Z(v;, vysi, Im(u) C span{s:}i_,

i=1

@ The algebraic tensor space coincides with the set of finite rank operators

Vs =FV,S)
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Relation with operators

@ The injective norm ||ul|v coincides with the operator norm supy,,,_; [[u(v)][s, and

ves'v = Fw.8) = kW,s),

the set of compact operators.

@ The tensor space equipped with the projective norm coincides with the set of nuclear
operators

vas'lh=yw,s)

o If S is also a Hilbert space, the tensor space equipped with the canonical inner
product norm || - || coincides with the space of Hilbert-Schmidt operators

vas'l = Hsw,s)
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Singular value decomposition

@ Assume V and S are Hilbert spaces.

e u € K(V,S) admits a singular value decomposition : there exist orthonormal
systems {v;} in V and {s;} € S, and a non increasing positive sequence {o;} with

oi \( 0 such that
o0
u= ZO‘,‘V; X s;
i=1

which converges in the operator norm.
@ Injective norm
lullv = o1

o Projective norm
oo
lulla ="
i=1

@ The canonical inner product norm coincides with the Hilbert Schmidt norm

oo
?—/sz g
[[ull > ot
i=1
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Coming back to Bochner spaces

o LEV) =L@®av
-lle =11l

o LXEV) D@V ™,

[+ lloo =1l [Iv
o LEEV) =L@V " (1<p<x)

Al < - lle < 1 lla

Anthony Nouy Ecole Centrale Nantes
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Low-rank approximation of order-two tensors

@ For an order-two tensor w € ¥V ® S, single notion of rank:
m
rank(w) <m & W:ZVi®Si
i=1

@ Set of tensors with rank bounded by m
Rm={w e V®S:rank(w) < m}
@ Best approximation uy, € R, (provided it exists) of
ueVeSs
with respect to || - || defined by

Ju = unll = min [lu—w] (*)
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Minimal subspaces

@ The minimal subspaces U""(w) and U5 (w) of w € V ® S are the smallest
subspaces in V and S respectively such that

weU™w)®S and Vo U (w)
@ ForweVa®s
Ur(w) = {(la@)(w) : p € S}, UF"(w) = {(¢® lo)(w) : o € V'}
e Rankof weV®S

’ rank(w) = dim(UFi"(W)) = dl'm(Uéﬂm(W)) ‘

Anthony Nouy Ecole Centrale Nantes 37



Well-posedness of best approximation problem

o If[[- I Z - [lv, then
rank(-) : ves'l 5 r
is weakly lower semi-continuous (w.l.s.c.) and therefore,
Rm={weV®S:rank(w) < m}
is weakly closed.

o If |- | Z1-]vandV 25 s reflexive, then a best approximation in R, exists.

o If || - || is not stronger than || - || but the tensor space is an intersection of tensor
spaces with such conditions on norms, well-posedness results can be obtained.
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Low-rank approximation of order-two tensors: subspace point of view

@ Subspace-based parametrization of R
Rm =A{W € Vn @ Sm; dim(Vm) = m, dim(Sm) = m}

or
m=A{w € Vn ®S,;dim(Vn) = m}
@ Best rank-m approximation of u € V@, S
R 1= ol = ol s, 14
[ — uml|

min ||u— upl|= min min

Un€ERmMm dim(Vm)=m um€Vn®S

@ That defines sequences of optimal subspaces V,, and Sp (w.r.t. the chosen norm
_ ym

II-11)- For um =>"", vi ® i, Vi = span{v;}1Z; and Sm = span{s;}1_,

or

39
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Hilbert setting: induced norm and SVD

Let V and S be Hilbert spaces and || - || the canonical (induced) inner product norm,

(V@ s,V @) = (v,V)vis,s)s.

® u€eV® S is identified with an operator u: v € V — (u, v)y € S which is
compact and admits a singular value decomposition
(oo}
u= ZO’,’V,’ ®si, (07) € £2(N)
i=1
@ The best rank-m approximation up, in the norm || - || coincides with the rank-m
truncated singular value decomposition of wu.
m
Un = Z oV ® s
i=1
@ Notion of decomposition with successive optimality conditions.
o Nested subspaces Vi, = span{v;}/Z; and Sm = span{s;}/Z;:

Vm C Vm+1 and Sm C 8m+1

Anthony Nouy Ecole Centrale Nantes
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Low-rank approximation in V ® L§(Z)

o Natural (induced) norm

1/p
fullo = ([ 1@ utde)) ™ tor p <o or Jull = esssup )l
@ A rank-m approximation um is of the form um(§) = >, visi(§)
@ The best rank-m approximation solves

- ol = mi i —wl,= mi —P
Jmin flu—wllp dim(rg;qzmwgrgmlgmllu wlp d,_m(rglmr;:mllu Vin U]

with  [[u(€) = Py, u(€)[lv = min [[u(€) — vl
@ Relation with optimal projection-based model reduction

i fu—wlp = min[[u(€) = Puu€)lv g ey = P (0)

Anthony Nouy Ecole Centrale Nantes
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Low-rank approximation in V ® L§(Z)

° d,(,f’)(u) is a linear width of the set of solutions K = {u(€) : £ € =} C V that
measures how well can be approximated by a m-dimensional space V,,. It quantifies
the ideal performance of a linear method.

e For p = o0, Kolmogorov m-width

i) =, min_ esssup [u(€) — Pu, u(€)]y < dn(K)

e For p < o0, linear m-width for L% -optimality (measure-dependent)

dim(Vm)=

diP(u) :=  min m( / |u<5)pvmu(s)||@u<d§))1/"

e For p = 2, the best rank-m approximation is the truncated singular value
decomposition of u and d,(nz)(u) =Xin 0,2)1/2. Singular value decomposition

also known as Karhunen-Loeve decomposition for u a probability measure.
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How to quantify optimal reduction methods ?

How fast m-widths go to zero with m ?

@ Some general results in approximation theory (usually exploiting smoothness).

@ Some finer results for particular cases.

Anthony Nouy Ecole Centrale Nantes 43



Behaviour of m-widths

Consider the parametric model
~V - (a(x,&)Vu(€) =f inDCR?, u(€)=0
0<a<a(x,€) <vy<oo

@ A general result.
K=u(Z)C Hy(D) =V

If f € H*~Y(D) and a(-,£) € C°, then u(¢) € H*™ and

dm(K) < m™/¢

Anthony Nouy Ecole Centrale Nantes
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Behaviour of m-widths

@ Finer results taking into account the particular parametrization
d
a(x,€) = ao(x) + Y _ai(x)&, &€ (-1,1)
i=1
e d < co: Exponential convergence of dn(K). Deterioration of the rate with d.

o d =00 If (J|ai]loc)iz1 € £p with p < 1, then@[Cohen—DeVore—Schwab 2010]
dm(K) < m~Y/PH
o Towards general results D[DeVore et al 2014]. Considering

A= {3(75) : ’E € E} - C(D)v

then
dm(K) < dm(A)
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Behaviour of m-widths: relation with best-m term approximation

@ Bounds of m-widths can be obtained from best m-term approximations.
o Let {¢a}acna be any set of functions. For Ay, C A, let Sp,, = span{¥a }acn,,-
o We have
(p) ; ; _ _
dn’(u) < ot ks M= wli ey

that means
dr(np)(“) <lu— U/\m||L,'j(E;V)

for any m-dimensional subspace Sp,, and any approximations ua,, in V ® Sa,,.

o Convergence results for ||u — un, || (=,) then provide estimates for m-width d,(nP)(u).
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Optimal low-rank approximation in the general case

@ In general, best rank-m approximation (provided it exists) can be defined w.r.t. to a
certain distance to the solution

E(u,um) = min E(u,w)= min min min _ E(u, w)
WERm dim(Vm)=m dim(Sm)=m wEVnQSm
o If
E(u,w) ~ Jlu—wl
then

_ < i _
lu = umll S min flu—w]|

® R is a manifold (not linear space nor convex set) : nonlinear approximation
problem.

Anthony Nouy Ecole Centrale Nantes 48



Computing low-rank approximation in the general case

@ In the Hilbert case and if £(u, w) = ||u — w||ns (induced canonical norm), then
truncated SVD provides optimal low-rank approximations.
@ Direct optimization in R, using

e Alternating minimization algorithms

i) =arg  min  E(uw), V= Urn(a)

weveslY

u,(,f) =arg min &(u,w), S,(:) = Ugﬁn(“r(r[z())
wevi¥es

e other algorithms on manifolds
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Computing low-rank approximation in the general case

@ Except for the Hilbert case with induced canonical norm E(u, w) = ||u — w/|ns,

e Optimal subspaces are not necessarily nested
Vm §Z Vm+1a Sm ¢ Sm+1

e No notion of decomposition

m
z : m m

Um = Vi ®s;
i=1

@ Suboptimal approximation using constructive algorithms : greedy construction of
approximation or subspaces
e Reduced Basis method (greedy algorithms) and Generalized Empirical
Interpolation Method (for L (Z) @ V)
o Proper Generalized Decompositions (for L*(Z) ® V)
o Adaptive Cross Approximation and Empirical Interpolation Method (for
L~ ® L)
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Proper Generalized Decomposition

@ Greedy construction of the approximation (well-known version of PGD)
Starting from wp = 0, construction of a sequence {Um}m21 by successive corrections
in the "dictionary” of rank-one elements R;:

E(U, Um—1+ Vimn @ sm) = min E(u, um—1 + w)
wER

Up = Z ViRS € Vn®@S8m, Vm=span{vi}iZ1, Sm = span{s;}iZ1

i=1
@ Greedy construction of subspaces (not well known versions of PGD 1)
E(u,um) = min min min _ E(u,w) = min min min &(u, Zaijv,-@sj)

dim(Vm)=m dim(Sm)=m wEVRQ®Snm VmEV sSmES gcRM*xm —
VmOVm-1 SmOSm-1 hi=1

or partially greedy construction of subspaces

E(u,um) = min min _&(u,w) = min min &(u, E Vi ® si)
dim(Vm)=mwEVm RS vm€V {5},
VmOVm-_1
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@ Suboptimal greedy construction of subspaces @[N. 2008; Tamellini, Le Maitre & N.

2013, Giraldi 2012] which are very close to the construction used in Empirical
Interpolation Method and Greedy algorithms for Reduces Basis methods.

@ Suboptimal partial greedy construction of subspaces @[N. 2007]

E(Uy um—1+ Vm ® Sm) = minmin E(u, Um—1+ v ® 5)
vEY seS

E(u,um) = min E(u,w), with V, =span{vi};

wEVRK®S
m
m
Um = E Vi @ s;
i=1
Greedy construction of a reduced basis {v1,..., Vm,...}.

Remark : Convergence results are available but still no a priori estimates.
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© Functional framework for parametric and stochastic equations
© Tensors

e Low-rank approximation of order-two tensors

e Computing low-rank approximations

° Low-rank methods for parametric and stochastic equations



Parametric and stochastic models

u€) eV, A(§)u(§) =£(¢£)
with A(¢) : V — W™ and f(§) e W*
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Tensor structured equations

@ Low-rank representations of operator and right-hand side

A©) =D M(OA, f(&) = an

@ If no such low-rank representation of operator and right-hand-side (or if R and L are
high), preliminary approximation (e.g. using interpolation)

Example
-V (k(-,§)Vu) =g(-,§) on D, u=0 on 0D

° k(x,&) = Z M(&)kk(x),  (Akv,w) = /DVW(X) - ki(x) - Vv(x) dx

o g(-€) = an J(x), (o w) = / g (x)w(x) dx

o If k and g are not of this form, low-rank approximation (e.g. using SVD or
Empirical Interpolation method).
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Tensor-structured equations for Galerkin approximation

Galerkin approximation of the solution in V ® LfL(E)”'H2 defined by

ueEV®S, B(uw)=Fw) YweWos

@ Approximation spaces S and Sin Li(E) (e.g. polynomial chaos). Usually, S = S
(Parametric Bubnov-Galerkin).

o B(v,w) =E,((A(§)v(¢), w(§))) = /:<A(y)V(Y)7W(Y)>u(dY)

o F(w) = E.((f(€), w())) :/<f(y),W(y)>u(d)/)

o Corresponding operator equation:
Bu=F

with B:V®S - (W®S8) and F e W ® S)* defined by
(Bu,w) = B(u,w), F(w)=(F,w)
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Tensor-structured equations for Galerkin approximation

@ )\ : = — R can be identified with an operator A: S — S* such that
(s, 5) = EL(A(€)s(£)5(¢))
0 A(€) = S8, M(€)Ax defines an operator B from V@ S to (W ® S)* such that
R
B=> Ac® N
k=1

o (&) = X 5_, mk(€)fi defines a tensor F € (W ® S)* such that

L
F:ka®77k
k=1

@ Tensor structured equation

R L
veVRS, Bu=F < <2Ak®/\k>u=sz®m
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o For {®;}¥, and {V;}M, bases of S and S, algebraic representation of A:
N e R M (N) = (A, W) = B, (ME)P(§)Vi(€))

e u€eV®S identified with a tensor u € RY @ RM such that

u=3 > ()ipi® P

i=1 j=1

@ Tensor structured equation in algebraic form

R L
ueRVoRY, Bu=F <« (ZAk@@Ak)quk@nk
k=1 k=1
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Classical iterative methods with low-rank truncations

Equation in tensor format
Bu=F

@ lterative solver (Richardson, Gradient...)
u® = T(u*=V) (T iteration map)

For example
u = k= a(Bu(kfl) —F)

@ Approximate iterations using low-rank truncations:

u® e Rme) such that [u® — T D) <e

@ For the canonical norm || - ||, truncation based on SVD
o Computational requirements: low-rank algebra and efficient SVD algorithms.
o Analysis : perturbation of algorithms.

(see @[Matthies and Zander 2012])
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Minimal residual low-rank approximation

@ Tensor structured equation
Bu

Il
n

@ Residual-based error
E(u,w) = ||Bw — Fllc = [|lw — ullg=cs

with a certain residual norm || - |2 = (C-, ).

@ Best rank-m approximation

E(u,um) = Jnin E(u,w)

Remark: another residual-based error

£(u, w)* = Eu (AW (E) — F(€)llbe) = En(lIw(€) — u(€)lle) pie)ace))

with a certain residual norm || - ||pe) on W*. For symmetric problems and
D(¢) = A(§)™", it yields E(u, w) = ||Bw — F||g-1.
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, then quasi-optimal approximation:

~ 1.

Qi

Assuming d&llw|| < [[wlz-cs < Fllw|
1 1 . .
lu— tm|| < = |Bum — Fllc = % min [[Bw — Fllc <L min |ju—wl|
(6% Q WERM Qa WERM

Importance of well-conditioned formulations, with
Construction of preconditioners in low-rank format D[GiraIdi-Nouy-Legrain 2014]

Goal-oriented approach by choosing C such that
[Bw — Fllc = [lw — ul|«

where || - ||« is @ norm constructed by taking into account the objective of the
[Billaud-Nouy-Zahm 2014]

computation

Ecole Centrale Nantes
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Low-rank approximation using sampling-based approach

@ We want to compute an approximation of the solution u(§), and then a variable of
interest s(u(&); &), for a collection of samples

{ﬁk}szl ==k

@ The computation of

is unaffordable.

@ Use of low-rank approximations ?
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Low-rank approximation using sampling-based approach

@ For samples {¢¥}X | = =k C =, we introduce the sample-based semi-norm

1/2
llull2,x = ( - Z fu( ||v)

@ The best rank-m approximation u, which solves
1K
. 2 . k ky (2
min |lu—w = min — u - w
mip o= wlie = mip e >0 1u€") — weIR
corresponds to the truncated singular value decomposition of the tensor

u={u(E)}H, eV =voRrX

also known as Empirical Karhunen-Loeve decomposition.

@ Requires the solution of K independent problems (Black box simulations)

u(€) = AETIF(EY), k=1,....K

o First idea: Compute K samples of the solution, extract an optimal reduced basis for
the samples using empirical KL, project the initial model on this basis (POD-like
approach)
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Low-rank approximation using sampling-based approach

@ Second idea : Residual based approach

E(u,w)? =

Z A )W(E) = F(E9qery = Ilw — ull3 o0
Denoting EX(f(£)) = £ S5, £(€9),
E(u,w)’ = B (IA©W(E) - F©)llbe)

@ Best rank-m approximation defined by

E(u,um) = Jnin E(u,w)

° |- Hfi,z,x defines on V ® R¥ a norm which is equivalent to || - ||2.x and
lu = tmlla i < % min fJu— vl
& vERm
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Low-rank approximation using sampling-based approach

@ Set of equations
A(§)u(§) = f(§), €=k (0)
with

A€) = _ZA,-A,-@L fF(&) = Z fimi (&)

o (O) identified with
Bu=F
with
R
B=>Y A®N, N =dag(\(),. .. \(E)) RN

i=1

L
F=> fm, m=@m(E),....m(E"))" eR”
i=1
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Computing optimal low-rank approximation

@ We have seen different ways of defining a low-rank approximation upn, by
minimization a certain distance £(u, um) to the solution:

E(u,um) = min E(u,v)

@ R, is a manifold (not linear space nor convex set) : nonlinear approximation
problem.

e Optimization in R, using alternating direction algorithms or other optimization
algorithms on manifolds.

e Suboptimal approximation using constructive algorithms : greedy construction
of approximation or subspaces, e.g. Proper Generalized Decomposition
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PGD algorithm in practice

o Ideal rank-m approximation up, defined by

E(u,um) = min E(u,w) = min min _E(u, w)
WERM dim(Vm)=mweVnR®S

@ Supoptimal greedy construction of subspaces V,,: Starting from 1V, = 0, we define a

sequence of rank-m approximations un, by

E(u,um) = min min _E(u, w)
dim(Vm)=m wEVm®S
VmOVm—1

Denoting um = Y1, vi ® s, we have
Vm€EV (s1,...,5m)ES™

S(U,Zv,-@s,-'"): min min S(U,ZVi®Si)
i=1 i=1

Anthony Nouy Ecole Centrale Nantes
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@ Alternating minimization algorithm for solving (5): solve successively

mln E(u, ZV, ®si)%, (6)

min S(U,ZVMX)S/) (7)

(s1,--+,5m)ES™

@ Consider a symmetric problem, and let

E(u,w) = |Bw—Fllg-1 = (Bw—F,w—u) = E, (A€)w(£) — F(£), w(€) — u(£)))
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@ Solution of (6) (non parametric problem):
m|n HBZV,@S, —Fl3-: & <BZV{®S,‘* F,i®sm)=0 VieV

which yields

m—1
> Z ,/4\
i=1

with

Ami = Eu(A©)sm(€)si(€)) = D Ademis  Memi = Eu(A(€)sm(€)si(€))

k=1

L

o = Eu(F(©)sn(€) = 3" Alm Tiem = Eu(ni(€)n(6))

k=1

e Ani is an evaluation of A(¢) = SR A(€) for particular values of the .

e f, is an evaluation of f(§) = Zi:l fink(&) for particular values of the 7.
o It looks like a sampling approach but it is not ! (no sampling of &)
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Example 1

(A(&)v,w) = /DVW(X)-/f(X,£)~VV(x)dx7 (f(&),w) = /l;g(x,ﬁ)w(x)dx

° (;z\\m,-v, w) = /DVW(X) “Rmi - Vv(x)dx  with  Kni(x) = Eu(k(x, &)sm(§)si(§))

o (Fm, w) :/L)Em(X)W(X)dX with  gm(x) = En(g(x,§)sm(S))
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@ Solution of (7) (reduced order parametric problem):

m
min HBZ vi®s — Fll5-
esm’

(S15-+-55m)
Denoting s = (si)72; € (S)™, it yields
E,((€) " An(€)s(€)) = Eu(t(§) "fm(€)) V€ (S)” (8)
with reduced parametrized matrix and vector

(Am(£))i = (A(&)vj, vi),  (Fm())i = (F(£), i)

Solution s(§) of (8) is the stochastic Galerkin approximation of the solution of

[An(§)s() = Fn($) | (9)

o Using low-rank (affine) representations of A({) and (&), we obtain

An(€) =D Amii(€), Fm(€) =D Fmsmu(£)-

e (8) is a system of m x dim(S) equations. If dim(S) > 1, structured
approximation in S can be used to reduce the cost (sparsity, low-rank...).

e (9) can be solved with sampling-based approaches (interpolation, regularized
least-squares...)
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Example: stochastic Groundwater flow equation (MOMAS /Couplex)

Groundwater flow equation (hydraulic head u) Uncertain BCs
u, U900 + U, P, u,
| —V(s(x,)Vu) =0 x€Q, €|
+ boundary conditions u, u,
I
Geological layers with uncertain properties —
Ug u,
Dogger k's probability laws
i Dogger LU(5,125) Dirichlet
Clay LU(3.1077,3.107%) r
Limestone  LU(1.2,30) aw
Marl LU(107%,107) u - U(288,290)
u  U(305,315)

D, us  U(330,350)
us  U(170,190)
10 basic uniform random variables &, J us  U(195,205)

= = (~1,1)!|, uniform probability P¢ us  U(285,287)
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First modes with the greedy construction of the approximation

Spatial modes {v1,..., v} Stochastic modes {s1,...,ss}: pdf

> BN
A

|
-
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Convergence of the progressive PGD (L-norm)

[lu— Um||L2(sz)
10° : :
—e—greedy approx.
—&—partial greedy
1072 subspace
2107
(0]
»
107
107 ‘
0 5 10 15 20
m
v
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PGD based on Galerkin orthogonality criteria

@ Approximation un in a subset M,

o For symmetric problems

| Bum — Fllz-1 = renln |Bw — Flj3-1 = mjl&l (Bw — F,w — u)

Necessary (but not sufficient) condition of optimality
(Bum — F,6w) =0 Yow € Ty, Mn (10)

where T,, M is the tangent space to M, at up.

@ For more general problems (provided B: V® S — (V ® S)*), search up, in M, such
that it verifies (10).

@ Alternating direction algorithms yields problems with the same structure as
previously.

@ Heuristic approach. No theoretical results except for particular cases.
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Application to an advection-diffusion-reaction equation

o Jiu— a1Au+ arc-Vu+ asu=asly, on Qx(0,T)
e u=0 on Qx{0}
e u=0 on 00Qx(0,T)

Uncertain parameters
al’(é.) :Mai(1+0'2£f)7 £i S U(_1>1)7 == (_171)4

Three samples of the solution u(x, t, &)

i
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Partial greedy construction of subspaces V,, with Arnoldi-type
construction

8 first modes of the decomposition {vi(x, t)...vs(x, t)}

SCE @

To compute these modes = ‘ only 8 deterministic problems
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Convergence of quantities of interest

Probability density function

Quantity of interest

s(€) =/OT/QZ u(x, £, €) dxdt

sm(§) = /OT /Q2 Um(x, t, ) dxdt

Anthony Nouy

Probability density function of sm(&)

m=1 m=2
. .
Jx10 x10
—Monte-Carlo —Monte-Carlo
6 ——Order 1 6 —Order2
5 5
4 4
3 3
2 2
1 1
% 3 4 5 6 % 3 4 5 6
x10° x10°
m=4 m=3
. .
Jx10 x10
——Monte-Carlo —Monte-Carlo
6 —Order 4 6 /"\.\ r
5 5 / \
4 4 ) \
3 3 / \
\
2 2 / \
1 1 / \\
. s ‘ N
2 3 4 5 6 2 3 4 5 [
x10° x10°
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Convergence of quantities of interest
Quantiles

99% Quantiles of sy(t, &)
Quantity of interest

m=1
3 xi0” 35 1
st.6) = [ uxegax ; -
Q) 25 25

Q 05 0 i

0 0005 001 0015 002 0025 003

Sm(tag) = /Q Um(X, t?&) dx

0 3 05

% o005 001 oo0t5s 002 0025 003 0 0005 001 0015 002 0025 003
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In summary

@ Linear methods for order reduction yield an approximation of the form
m
um(€) =D visi(é)
i=1

with v; € V and s; € Lf,(Z), which is an element of rank m in V ® L}, (2)

@ Optimal linear order reduction methods are related with optimal low-rank
approximation.

o Efficient solution methods exploiting low-rank formats

@ Extension of these ideas to higher order tensor spaces ? Application to
high-dimensional approximation...
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