tensap.functions package¶
Subpackages¶
- tensap.functions.measures package
- Submodules
- tensap.functions.measures.copulas module
- tensap.functions.measures.discrete_measure module
- tensap.functions.measures.discrete_random_variable module
- tensap.functions.measures.empirical_random_variable module
- tensap.functions.measures.measure module
- tensap.functions.measures.normal_random_variable module
- tensap.functions.measures.probability_measure module
- tensap.functions.measures.product_measure module
- tensap.functions.measures.random_multi_indices module
- tensap.functions.measures.random_variable module
- tensap.functions.measures.random_vector module
- tensap.functions.measures.uniform_random_variable module
- Module contents
- tensap.functions.polynomials package
- tensap.functions.sets package
Submodules¶
tensap.functions.compositional_model_function module¶
Module compositional_model_function
-
class
tensap.functions.compositional_model_function.
CompositionalModelFunction
(tree, fun, measure)¶ Bases:
tensap.functions.function.Function
Class CompositionalModelFunction.
- Attributes
- treetensap.DimensionTree
The dimension tree associated with the function.
- funlist or numpy.ndarray or function or tensap.Function
A list or array of functions, one for each node of the tree, or one function, identical for all the internal nodes of the tree.
- measuretensap.Measure
The measure associated with the function.
Methods
__call__
(x[, return_f])Call self as a function.
eval
(x)Evaluate the CompositionalModelFunction at points x.
eval_on_tensor_grid
(x)Evaluate the Function on a grid x.
fplot
([support, n_points])Plot the function on a support using a given number of points.
partial_evaluation
(not_alpha, x_not_alpha)Return the partial evaluation of a function f(x) = f(x_alpha,x_not_alpha), a function f_alpha(.) = f(., x_not_alpha) for fixed values x_not_alpha of the variables with indices not_alpha.
random
([n, measure])Evaluates the function at n points x drawn randomly according to the ProbabilityMeasure in measure if provided, or in self.measure.
store_eval
(x)Evaluate the function, reuising previous evaluations if possible, and storing the new evaluations in self.
surf
([n])Surface plot of the bivariate function.
test_error
(g[, n, measure])Compute the test error associated with the function, using a function g or some of its evaluations as a reference.
-
eval
(x)¶ Evaluate the CompositionalModelFunction at points x.
- Parameters
- xlist or numpy.ndarray
The points at which the function is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the function at points x.
tensap.functions.function module¶
Module function.
-
class
tensap.functions.function.
Function
¶ Bases:
object
Class Function.
- Attributes
- dimint
The dimension of the input of the function.
- measuretensap.Measure
The measure associated with the function.
- output_shapeint or list or numpy.ndarray
The shape of the output of the function.
- evaluation_at_multiple_pointsbool
Indicates if the function can be evaluated at multiple points at once.
- storebool
Indicates if the Function object should store the evaluations of the function.
Methods
__call__
(x[, return_f])Call self as a function.
eval
(x)Evaluate the function at the points x.
Evaluate the Function on a grid x.
fplot
([support, n_points])Plot the function on a support using a given number of points.
partial_evaluation
(not_alpha, x_not_alpha)Return the partial evaluation of a function f(x) = f(x_alpha,x_not_alpha), a function f_alpha(.) = f(., x_not_alpha) for fixed values x_not_alpha of the variables with indices not_alpha.
random
([n, measure])Evaluates the function at n points x drawn randomly according to the ProbabilityMeasure in measure if provided, or in self.measure.
store_eval
(x)Evaluate the function, reuising previous evaluations if possible, and storing the new evaluations in self.
surf
([n])Surface plot of the bivariate function.
test_error
(g[, n, measure])Compute the test error associated with the function, using a function g or some of its evaluations as a reference.
-
abstract
eval
(x)¶ Evaluate the function at the points x.
- Parameters
- xlist or numpy.ndarray
The points at which the function is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the function at the points x.
-
eval_on_tensor_grid
(x)¶ Evaluate the Function on a grid x.
- Parameters
- xtensap.TensorGrid
The tensap.ensorGrid used for the evaluation..
- Returns
- fxnumpy.ndarray
The evaluation of the Function on the grid.
- Raises
- NotImplementedError
If the method is not implemented.
- ValueError
If x is not a tensap.TensorGrid object.
-
fplot
(support=None, n_points=100, *args, **kwargs)¶ Plot the function on a support using a given number of points.
- Parameters
- supportlist or numpy.ndarray, optional
The support of the plot. The default is None, indicating to use the truncated_support of self.measure.
- n_pointsint, optional
The number of points used for the plot. The default is 100.
- *argstuple
Additional parameters used by the function matplotlib.pyplot.plot.
- Returns
- None.
-
partial_evaluation
(not_alpha, x_not_alpha)¶ Return the partial evaluation of a function f(x) = f(x_alpha,x_not_alpha), a function f_alpha(.) = f(., x_not_alpha) for fixed values x_not_alpha of the variables with indices not_alpha.
- Parameters
- not_alphalist or numpy.ndarray
The indices of the fixed variables.
- x_not_alphanumpy.ndarray
The points at which the function is evaluated in the dimensions not_alpha.
- Returns
- f_alphatensap.UserDefinedFunction
The partial evaluation of the Function.
- Raises
- ValueError
If the Function has an empty attribute dim.
-
random
(n=1, measure=None)¶ Evaluates the function at n points x drawn randomly according to the ProbabilityMeasure in measure if provided, or in self.measure.
- Parameters
- nint, optional
The number of random evaluations. The default is 1.
- measuretensap.ProbabilityMeasure, optional
The probability measure according to which the points x are drawn. The default is None, indicating to use self.measure.
- Returns
- numpy.ndarray
The evaluations of the function at the points x.
- xnumpy.ndarray
The points at which the function is to be evaluated.
- Raises
- ValueError
If the provided measure is not a tensap.ProbabilityMeasure.
-
store_eval
(x)¶ Evaluate the function, reuising previous evaluations if possible, and storing the new evaluations in self.
- Parameters
- xnumpy.ndarray
The input points.
- Returns
- ynumpy.ndarray
The evaluations of the Function.
- tensap.Function
The Function with stored evaluations, for future reuse.
-
surf
(n=None, *args)¶ Surface plot of the bivariate function.
- Parameters
- nlist or numpy.ndarray, optional
The number of points used for the surface plot in each dimension. The default is [1000, 1000].
- *argstuple
Additional parameters used by matplotlib.pyplot’s plot_surface function.
- Returns
- axmatplotlib.axes._subplots.AxesSubplot
The surface plot as a matplotlib.axes._subplots.AxesSubplot object.
-
test_error
(g, n=1000, measure=None)¶ Compute the test error associated with the function, using a function g or some of its evaluations as a reference. A measure can be provided to randomly draw the test input data.
- Parameters
- gtensap.Function or numpy.ndarray
The reference function or evaluations of it.
- nint or numpy.ndarray, optional
The test sample size, or the test input data. The default is 1000 test input points.
- measuretap.ProbabilityMeasure, optional
A probability measure used to draw the test input data. The default is None, indicating to either use self.measure, g.measure or the provided input points.
- Returns
- err_l2float
The L2 error.
- err_linffloat
The L-infinity error.
tensap.functions.functional_tensor module¶
Module functional_tensor.
-
class
tensap.functions.functional_tensor.
FunctionalTensor
(tensor=None, bases=None, fdims=None)¶ Bases:
tensap.functions.function.Function
Class FunctionalTensor.
- Attributes
- tensorTensor or tensap.FunctionalTensor, optional
The tensor of the FunctionalTensor. The default is None.
- baseslist or tensap.FunctionalBases, optional
The functional bases of the FunctionalTensor. The default is None.
- fdimslist or numpy.ndarray, optional
The dimensions corresponding to the bases. The default is None.
Methods
__call__
(x[, return_f])Call self as a function.
conditional_expectation
(dims, *args)Compute the conditional expectation of self with respect to the random variables dims (a subset of [1, …, d]).
derivative
(n)Compute the n-th order derivative of self.
dot_product_expectation
(f_2[, fdims])Computes the expectation of self(X)f_2(X) where X is the random vector associated with self.bases if measure is not provided, and measure otherwise.
eval
(x, *dims)Evaluate self at the points x.
eval_derivative
(n, x, *dims)Evaluate the n-th order derivative of self at the points x.
eval_on_grid
(x[, dims])Compute evaluations of self at points x.
eval_on_tensor_grid
(x)Evaluate the Function on a grid x.
eval_with_bases_evals
(bases_eval[, dims])Evaluate the function self, given evaluations of self.bases.
expectation
(*measure)Compute the expectation of the random variable self(measure) if measure is provided, and of self(self.bases.measure) otherwise.
fplot
([support, n_points])Plot the function on a support using a given number of points.
Return the RandomVector associated with self.bases.
Determine if self is random.
mean
(*measure)Compute the expectation of the random variable self(measure) if measure is provided, and of self(self.bases.measure) otherwise.
norm
(*measure)Return the L^2 norm of self(X), with X = measure if provided, and X = self.bases.measure otherwise.
parameter_gradient_eval
(alpha[, x])Compute the gradient of the function with respect to its alpha-th parameter, evaluated at some points.
partial_evaluation
(not_alpha, x_not_alpha)Return the partial evaluation of a function f(x) = f(x_alpha,x_not_alpha), a function f_alpha(.) = f(., x_not_alpha) for fixed values x_not_alpha of the variables with indices not_alpha.
random
(*args, **kwargs)Evaluates the function at n points x drawn randomly according to the ProbabilityMeasure in measure if provided, or in self.measure.
random_dims
(dims, *args[, nargout])Evaluate the function in dimensions dims using n points drawn randomly according to measure if provided, or to self.bases.measure.marginal(dims) otherwise.
std
(*measure)’
storage
()Return the storage requirement of the FunctionalTensor.
store_eval
(x)Evaluate the function, reuising previous evaluations if possible, and storing the new evaluations in self.
surf
([n])Surface plot of the bivariate function.
test_error
(g[, n, measure])Compute the test error associated with the function, using a function g or some of its evaluations as a reference.
variance
(*measure)Compute the variance of the random variable self(measure) if measure is provided, and of self(self.bases.measure) otherwise.
Compute the variance of the conditional expectation of self in dimensions in alpha.
parameter_gradient_eval_dmrg
-
conditional_expectation
(dims, *args)¶ Compute the conditional expectation of self with respect to the random variables dims (a subset of [1, …, d]).
The expectation with respect to other variables (in the complementary set of dims) is taken with respect to the probability measure given by a tensap.RandomVector if provided as an additional argument, or with respect to the probability measure associated with the corresponding bases of self.
- Parameters
- dimslist or numpy.ndarray
The dimensions of the random variables with respect to which the conditional expectation is to be computed.
- *argstuple
Tuple containing a tensap.randomVector giving the probability measure of the variables other than the ones in dims. If not provided, the measure is infered from self.bases.measure.
- Returns
- tensap.FunctionalTensor
The conditional expectation of self with respect to the random variables dims, as a len(dims)-order tensor.
-
derivative
(n)¶ Compute the n-th order derivative of self.
- Parameters
- nint
The order of derivation.
- Returns
- dftensap.FunctionalTensor
The n-th order derivative of self.
-
dot_product_expectation
(f_2, fdims=None, *measure)¶ Computes the expectation of self(X)f_2(X) where X is the random vector associated with self.bases if measure is not provided, and measure otherwise.
For tensor-valued functions of X (len(X)<self.order), fdims specifies the dimensions of self and f_2 corresponding to theRandomVector X.
- Parameters
- f_2tensap.FunctionalTensor
The second functional tensor of the product.
- fdimslist of numpy.ndarray, optional
Specifies the dimensions of self and f_2 corresponding to theRandomVector X. The default is None, indicating all the dimensions
- *measuretensap.RandomVector, optional
The measure used for the computation of the product. If not provided, indicates to use self.bases.measure.
- Returns
- float or Tensor
The expectation of self(X)f_2(X).
- Raises
- ValueError
If the two tensors do not have the same order and fdims is not specified.
- NotImplementedError
If the bases of self and f_2 are not equal.
-
eval
(x, *dims)¶ Evaluate self at the points x.
If dims is provided, compute the partial evaluations of self at points x in dimensions in dims.
- Parameters
- xlist or numpy.ndarray or None
The points at which the function is to be evaluated. If x is None and self.evaluated_bases, evaluates the function using the evaluations of the bases.
- *dimslist or numpy.ndarray, optional
The dimensions of the partial evaluation. If not provided, evaluate the function in all dimensions.
- Returns
- numpu.ndarray or Tensor
The evaluations of self at the points x.
-
eval_derivative
(n, x, *dims)¶ Evaluate the n-th order derivative of self at the points x.
If dims is provided, compute the partial evaluations of the n-th order derivative of self at points x n dimensions in dims.
- Parameters
- nint
The order of derivation.
- xlist or numpy.ndarray
The points at which the function is to be evaluated.
- *dimslist or numpy.ndarray, optional
The dimensions of the partial evaluation. If not provided, evaluate the function in all dimensions.
- Returns
- numpu.ndarray or Tensor
The evaluations of the n-th derivative of self at the points x.
-
eval_on_grid
(x, dims=None)¶ Compute evaluations of self at points x.
- Parameters
- xlist
List such that x[k] contains the grid associated with the (k+1)-th variable.
- dimslist or numpy.ndarray, optional
Array indicating the dimensions associated with x. The default is None, indicating all the dimensions.
- Returns
- outFunctionalTensor or tensap.Tensor
The evaluations of self at points x.
-
eval_with_bases_evals
(bases_eval, dims=None)¶ Evaluate the function self, given evaluations of self.bases.
- Parameters
- bases_evallist or numpy.ndarray
The evaluations of self.bases.
- dimslist or numpy.ndarray, optional
The dimensions of the evaluation. The default is None, indicating all the dimensions.
- Returns
- outnumpy.ndarray or Tensor
The (partially) evaluated function.
-
expectation
(*measure)¶ Compute the expectation of the random variable self(measure) if measure is provided, and of self(self.bases.measure) otherwise.
- Parameters
- *measuretensap.RandomVector, optional
The measure used for the computation of the expectation. If not provided, indicates to use self.bases.measure.
- Returns
- float or Tensor
The expectation of the function.
-
get_random_vector
()¶ Return the RandomVector associated with self.bases.
- Returns
- tensap.RandomVector
The RandomVector associated with self.bases.
-
is_random
()¶ Determine if self is random.
- Returns
- bool
Boolean indicating if if self is random.
-
mean
(*measure)¶ Compute the expectation of the random variable self(measure) if measure is provided, and of self(self.bases.measure) otherwise.
- Parameters
- *measuretensap.RandomVector, optional
The measure used for the computation of the mean. If not provided, indicates to use self.bases.measure.
- Returns
- float or Tensor
The mean of the function.
-
norm
(*measure)¶ Return the L^2 norm of self(X), with X = measure if provided, and X = self.bases.measure otherwise.
If self.evaluatedBases is true, without additional information, return the canonical norm of self.tensor.
- Parameters
- *measuretensap.RandomVector, optional
The measure used for the computation of the norm. If not provided, indicates to use self.bases.measure.
- Returns
- float or Tensor
The L^2 norm of self(X).
-
parameter_gradient_eval
(alpha, x=None, *args)¶ Compute the gradient of the function with respect to its alpha-th parameter, evaluated at some points.
- Parameters
- alphaint
The number of the parameter with respect to which compute the gradient of self.
- xlist or numpy.ndarray, optional
The points at which the gradient is to be evaluated. The default is None, indicating to use self.bases if self.evaluated_bases is True.
- Returns
- gradTensor
The gradient of the function with respect to its alpha-th parameter, evaluated at some points.
- Raises
- ValueError
If no input points are provided.
-
parameter_gradient_eval_dmrg
(alpha, x=None, dmrg_type='dmrg', *args)¶
-
random
(*args, **kwargs)¶ Evaluates the function at n points x drawn randomly according to the ProbabilityMeasure in measure if provided, or in self.measure.
- Parameters
- nint, optional
The number of random evaluations. The default is 1.
- measuretensap.ProbabilityMeasure, optional
The probability measure according to which the points x are drawn. The default is None, indicating to use self.measure.
- Returns
- numpy.ndarray
The evaluations of the function at the points x.
- xnumpy.ndarray
The points at which the function is to be evaluated.
- Raises
- ValueError
If the provided measure is not a tensap.ProbabilityMeasure.
-
random_dims
(dims, *args, nargout=1)¶ Evaluate the function in dimensions dims using n points drawn randomly according to measure if provided, or to self.bases.measure.marginal(dims) otherwise.
- Parameters
- dimslist or numpy.ndarray
The dimensions of the bases to be evaluated.
- nint, optional
The number of random evaluations. The default is 1.
- measuretensap.ProbabilityMeasure, optional
The probability measure used for the generation of the input points. The default is None, indicating to use self.measure.marginal(dims).
- Returns
- bases_evallist or numpy.ndarray
Random evaluations of the function.
- xnumpy.ndarray
The input points, grouped by basis.
-
std
(*measure)¶ ‘ Compute the standard deviation of the random variable self(measure) if measure is provided, and of self(self.bases.measure) otherwise.
- Parameters
- *measuretensap.RandomVector, optional
The measure used for the computation of the standard deviation. If not provided, indicates to use self.bases.measure.
- Returns
- vfloat or Tensor
The standard deviation of the function.
-
storage
()¶ Return the storage requirement of the FunctionalTensor.
- Returns
- int
The storage requirement of the FunctionalTensor.
-
variance
(*measure)¶ Compute the variance of the random variable self(measure) if measure is provided, and of self(self.bases.measure) otherwise.
- Parameters
- *measuretensap.RandomVector, optional
The measure used for the computation of the variance. If not provided, indicates to use self.bases.measure.
- Returns
- varfloat or Tensor
The variance of the function.
-
variance_conditional_expectation
(alpha)¶ Compute the variance of the conditional expectation of self in dimensions in alpha.
- Parameters
- alphalist or numpy.ndarray
Array containing the dimensions (either explicitely or using booleans) in which the variance of the conditional expectation is computed.
- Returns
- vnumpy.ndarray
The variance of the conditional expectation of self in dimensions in alpha.
tensap.functions.multivariate_functions_benchmark module¶
Module multivariate_functions_benchmark
-
tensap.functions.multivariate_functions_benchmark.
multivariate_functions_benchmark
(case, *args)¶ Generate different functions used to benchmark the package.
- Parameters
- casestr
The name of the function. Can be ‘borehole’, ‘ishigami’, ‘sin_of_a_sum’, ‘linear_additive’, ‘linear_rank_one’, ‘quadratic_rank_one’, ‘canonical_rank_2’, ‘mixture’, ‘field’, ‘oscillatory’, ‘product_peak’, ‘corner_peak’, ‘gaussian’, ‘continuous’, ‘discontinuous’, ‘henon_heiles’, ‘sobol’, ‘anisotropic’, ‘polynomial’.
- *argstuple
Parameters of the function.
- Returns
- function
The asked function.
- tensap.RandomVector
Input random variables.
- Raises
- NotImplementedError
If the function is not implemented.
tensap.functions.tensorized_function module¶
Module tensorized_function.
-
class
tensap.functions.tensorized_function.
TensorizedFunction
(fun, tens=None)¶ Bases:
tensap.functions.function.Function
Class TensorizedFunction.
- Attributes
- funfunction or tensap.Function
A function of (d+1)*dim variables.
- tenstensap.Tensorizer
A tensap.Tensorizer object.
Methods
__call__
(x[, return_f])Call self as a function.
domain
()Return the domain of the function.
eval
(z)Evaluate the function at the points x.
eval_on_tensor_grid
(x)Evaluate the Function on a grid x.
fplot
([support, n_points])Plot the function on a support using a given number of points.
partial_evaluation
(not_alpha, x_not_alpha)Return the partial evaluation of a function f(x) = f(x_alpha,x_not_alpha), a function f_alpha(.) = f(., x_not_alpha) for fixed values x_not_alpha of the variables with indices not_alpha.
random
([n, measure])Evaluates the function at n points x drawn randomly according to the ProbabilityMeasure in measure if provided, or in self.measure.
store_eval
(x)Evaluate the function, reuising previous evaluations if possible, and storing the new evaluations in self.
surf
([n])Surface plot of the bivariate function.
test_error
(g[, n, measure])Compute the test error associated with the function, using a function g or some of its evaluations as a reference.
-
domain
()¶ Return the domain of the function.
- Returns
- supnumpy.ndarray
The domain of the function.
-
eval
(z)¶ Evaluate the function at the points x.
- Parameters
- xlist or numpy.ndarray
The points at which the function is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the function at the points x.
tensap.functions.tensorizer module¶
Module tensorizer.
-
class
tensap.functions.tensorizer.
Tensorizer
(b, d, dim=1, X=None, Y=None)¶ Bases:
object
Class Tensorizer.
- Attributes
- bint
The base of the map.
- dint
The resolution of the map.
- dimint
The input dimension of the function to be tensorized.
- Xtensap.RandomVector
Random vector used for the map.
- Ytensap.RandomVector
Random vector used for the map.
Methods
inverse_map
(z)Evaluate the map at points z = (i_1, …, i_d, y), returning x such that self.map(x) = z.
map
(x[, nargout])Evaluate the map at points x, returning y and i such that self.map(x) = (i_1, …, i_d, y).
tensorize
(fun)Tensorize a provided function defined on self.X.support().
Return a tensap.FunctionalBases object associated with the provided basis or basis function(s) and the Tensorizer object.
u2z
(u, b, d[, nargout])Return the representation of numbers on [0, 1] in base b with resolution d.
z2u
(z, b)Return the representation of numbers in base b in decimal on [0, 1].
-
inverse_map
(z)¶ Evaluate the map at points z = (i_1, …, i_d, y), returning x such that self.map(x) = z.
- Parameters
- zlist or numpy.ndarray
The points at which the inverse map is to be evaluated.
- Returns
- numpy.ndarray
The points x such that self.map(x) = z.
-
map
(x, nargout=1)¶ Evaluate the map at points x, returning y and i such that self.map(x) = (i_1, …, i_d, y).
- Parameters
- xlist or numpy.ndarray
The points at which the map is to be evaluated.
- nargoutint, optional
The number of outputs. The default is 1, returning a horizontal stack of i and y. Set to 2 to return y and i separately.
- Returns
- numpy.ndarray
Either (i_1, …, i_d, y) if nargout == 1, or y if nargout == 2.
- numpy.ndarray
(i_1, …, i_d), if nargout == 2.
-
tensorize
(fun)¶ Tensorize a provided function defined on self.X.support().
- Parameters
- funfunction or tensap.Function
The function to be tensorized.
- Returns
- tensap.TensorizedFunction
The tensorized function.
- Raises
- ValueError
If the provided argument is neither a tensap.Function nor a function.
-
tensorized_function_functional_bases
(h=1)¶ Return a tensap.FunctionalBases object associated with the provided basis or basis function(s) and the Tensorizer object.
- Parameters
- htensap.FunctionalBases or tensap.FunctionalBasis or function or
- list or scalar, optional
The function used to generate the basis. The default is the function 1.
- Returns
- tensap.FunctionalBases
The functional bases.
-
static
u2z
(u, b, d, nargout=1)¶ Return the representation of numbers on [0, 1] in base b with resolution d.
- Parameters
- ulist or numpy.ndarray
The inputs to be converted in base b with resolution d.
- bint
The base.
- dint
The resolution.
- nargoutint, optional
The number of outputs. The default is 1, returning a horizontal stack of i and y. Set to 2 to return y and i separately.
- Returns
- numpy.ndarray
Either (i_1, …, i_d, y) if nargout == 1, or y if nargout == 2.
- numpy.ndarray
(i_1, …, i_d), if nargout == 2.
-
static
z2u
(z, b)¶ Return the representation of numbers in base b in decimal on [0, 1].
- Parameters
- zlist or numpy.ndarray
The numbers in base b.
- bint
The base.
- Returns
- numpy.ndarray
The decimal representation of the inputs on [0, 1].
tensap.functions.user_defined_function module¶
Module user_defined_function.
-
class
tensap.functions.user_defined_function.
UserDefinedFunction
(fun, dim, shape=None)¶ Bases:
tensap.functions.function.Function
Class UserDefinedFunction.
- Attributes
- funfunction or tensap.Function
The function defining the UserDefinedFunction object.
Methods
__call__
(x[, return_f])Call self as a function.
eval
(x)Evaluate the function at the points x.
eval_on_tensor_grid
(x)Evaluate the Function on a grid x.
fplot
([support, n_points])Plot the function on a support using a given number of points.
partial_evaluation
(not_alpha, x_not_alpha)Return the partial evaluation of a function f(x) = f(x_alpha,x_not_alpha), a function f_alpha(.) = f(., x_not_alpha) for fixed values x_not_alpha of the variables with indices not_alpha.
random
([n, measure])Evaluates the function at n points x drawn randomly according to the ProbabilityMeasure in measure if provided, or in self.measure.
store_eval
(x)Evaluate the function, reuising previous evaluations if possible, and storing the new evaluations in self.
surf
([n])Surface plot of the bivariate function.
test_error
(g[, n, measure])Compute the test error associated with the function, using a function g or some of its evaluations as a reference.
-
eval
(x)¶ Evaluate the function at the points x.
- Parameters
- xlist or numpy.ndarray
The points at which the function is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the function at the points x.