tensap.functions.measures package¶
Submodules¶
tensap.functions.measures.copulas module¶
Module copulas.
-
class
tensap.functions.measures.copulas.
Copula
¶ Bases:
abc.ABC
-
class
tensap.functions.measures.copulas.
IndependentCopula
¶ Bases:
tensap.functions.measures.copulas.Copula
Methods
cdf
pdf
-
cdf
(u)¶
-
pdf
(u)¶
-
tensap.functions.measures.discrete_measure module¶
Module discrete_measure.
-
class
tensap.functions.measures.discrete_measure.
DiscreteMeasure
(values, weights=None)¶ Bases:
tensap.functions.measures.measure.Measure
Class DiscreteMeasure: discrete measure in R^d sum_{i=1}^n w_i delta_{x_i}.
- Attributes
- valuesnumpy.ndarray
Array containing the set of values (x_1,…,x_N) taken by the random variable, with x_i in R^d, i = 1, …, N.
- weightsnumpy.ndarray, optional
Array containing the weights P(X=x_1), …, P(X=x_N). The default is None, indicating to take weights equal to 1.
Methods
Return the integration rule associated with the measure
mass
()Return the mass of the Measure.
ndim
()Return the dimension of the Measure.
plot
(*args)Plot a graphical representation of the discrete measure.
random
([n])Generate n random numbers according to the probability distribution obtained by rescaling the DiscreteMeasure.
support
()Return the support of the Measure.
-
integration_rule
()¶ Return the integration rule associated with the measure
- Returns
- tensap.IntegrationRule
The integration rule associated with the measure
-
mass
()¶ Return the mass of the Measure.
- Returns
- None.
-
ndim
()¶ Return the dimension of the Measure.
- Returns
- None.
-
plot
(*args)¶ Plot a graphical representation of the discrete measure.
- Parameters
- *argstuple
Additional parameters for matplotlib.pyplot’s function vlines.
- Returns
- None.
-
random
(n=1)¶ Generate n random numbers according to the probability distribution obtained by rescaling the DiscreteMeasure.
- Parameters
- nint, optional
The number of random numbers generated. The default is 1.
- Returns
- numpy.ndarray
The n generated random numbers.
-
support
()¶ Return the support of the Measure.
- Returns
- None.
tensap.functions.measures.discrete_random_variable module¶
Module discrete_random_variable.
-
class
tensap.functions.measures.discrete_random_variable.
DiscreteRandomVariable
(values, probabilities=None)¶ Bases:
tensap.functions.measures.random_variable.RandomVariable
Class DiscreteRandomVariable.
- Attributes
- valueslist or numpy.ndarray
Array containing the set of values (x_1,…,x_N) taken by the random variable, with x_i in R^d, i = 1, …, N.
- probabilitieslist or numpy.ndarray, optional
Array containing the probabilities P(X=x_1), …, P(X=x_N). The default is None, indicating to create a uniform law: P(X=x_i)=1/N, i = 1, …, N.
Methods
cdf
(x)Compute the cumulative density function of X at x.
cdf_plot
(*args)Plot the cumulative distribution function (cdf) of the random variable.
discretize
(n)Return a discrete random variable taking n possible values x1, …, xn, these values being the quantiles of self of probability 1/(2n) + i/n, i=0n …, n-1 and such that P(Xn >= xn) = 1/n.
gauss_integration_rule
(nb_pts)Return the nb_pts-points gauss integration rule associated with the measure of self, using Golub-Welsch algorithm.
Return the parameters of the random variable.
Return the standard discrete random variable.
icdf
(p)Compute the inverse cumulative density function of X at p (quantile).
icdf_plot
(*args)Plot the inverse cumulative distribution function (icdf) of the random variable.
Return the integration rule object associated with the discrete random variable.
iso_probabilistic_grid
(n)Return a set of n+1 points (x_0, …, x_{n}) such that the n sets (x0, x_1), [x_1, x_2) .
lhs_random
(n[, p])Latin Hypercube Sampling of the random variable self of n points in dimension p.
likelihood
(x)Compute the log-likelihood of the random variable on sample x.
mass
()Return the mass of the Measure.
max
()Compute the maximum value that can take the inverse cumulative distribution function of the random variable.
mean
()Return the mean of the random variable.
min
()Compute the minimum value that can take the inverse cumulative distribution function of the random variable.
moment
(ind[, nargout])Compute the moments of self of orders contained in ind, defined as E(X^ind[î]).
ndim
()Return the dimension of the random variable, equal to 1.
number_of_parameters
()Compute the number of parameters that admits the random variable.
orthonormal_polynomials
(*max_degree)Return the max_degree-1 first orthonormal polynomials associated with the RandomVariable.
pdf
(x)Compute the probability density function (pdf) of the RandomVariable at points x.
pdf_plot
(*args)Plot the probability density function (pdf) of the random variable.
plot
(quantity, *args)Plot the desired quantity, chosen between ‘pdf’, ‘cdf’ or ‘icdf’.
random
([n])Generate n random numbers according to the distribution of the RandomVariable.
Return the mean and the variance of the discrete random variable.
std
()Return the standard deviation of the random variable.
support
()Return the support of the Measure.
transfer
(Y, x)Transfer from the random variable self to the random variable Y at points x.
truncated_support
()Return the truncated support of the random variable.
var
()Return the variance of the random variable.
variance
()Return the variance of the random variable.
random_rejection
-
cdf
(x)¶ Compute the cumulative density function of X at x.
- Parameters
- xfloat, list or numpy.ndarray
The points at which the cumulative density function of X is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the cumulative density function of X at x.
-
get_parameters
()¶ Return the parameters of the random variable.
-
get_standard_random_variable
()¶ Return the standard discrete random variable.
- Returns
- tensap.UniformRandomVariable
The standard discrete random variable.
-
icdf
(p)¶ Compute the inverse cumulative density function of X at p (quantile).
- Parameters
- pfloat, list or numpy.ndarray
The points at which the inverse cumulative density function of X is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the inverse cumulative density function of X at x.
-
integration_rule
()¶ Return the integration rule object associated with the discrete random variable.
- Returns
- tensap.IntegrationRule
The integration rule object associated with the discrete random variable.
-
mean
()¶ Return the mean of the random variable.
- Returns
- float
The mean of the random variable.
-
plot
(quantity, *args)¶ Plot the desired quantity, chosen between ‘pdf’, ‘cdf’ or ‘icdf’.
- Parameters
- quantitystr
The desired quantity, chosen between ‘pdf’, ‘cdf’ or ‘icdf’.
- *argstuple
Additional parameters for matplotlib.pyplot’s function step (for the cdf), vlines (for the pdf) or plot (for the icdf).
- Returns
- None.
- Raises
- ValueError
If the provided argument quantity is wrong.
-
random
(n=1)¶ Generate n random numbers according to the distribution of the RandomVariable.
- Parameters
- nint
The number of random numbers generated.
- Returns
- numpy.ndarray
The generated numbers.
-
random_variable_statistics
()¶ Return the mean and the variance of the discrete random variable.
- Returns
- float
The mean of the random variable.
- float
The variance of the random variable.
-
support
()¶ Return the support of the Measure.
- Returns
- None.
-
var
()¶ Return the variance of the random variable.
- Returns
- float
The variance of the random variable.
tensap.functions.measures.empirical_random_variable module¶
Module empirical_random_variable.
-
class
tensap.functions.measures.empirical_random_variable.
EmpiricalRandomVariable
(sample)¶ Bases:
tensap.functions.measures.random_variable.RandomVariable
Class EmpiricalRandomVariable. A random variable fitted using gaussian kernel smoothing, this class gives best results in the case of normal distributions.
- Attributes
- samplenumpy.array
The sample used to generate the random variable.
- bandwidthfloat
The computed bandwidth for the kernel density estimator.
Methods
cdf
(x)Compute the cumulative distribution function (cdf) of the RandomVariable at points x.
cdf_plot
(*args)Plot the cumulative distribution function (cdf) of the random variable.
discretize
(n)Return a discrete random variable taking n possible values x1, …, xn, these values being the quantiles of self of probability 1/(2n) + i/n, i=0n …, n-1 and such that P(Xn >= xn) = 1/n.
gauss_integration_rule
(nb_pts)Return the nb_pts-points gauss integration rule associated with the measure of self, using Golub-Welsch algorithm.
Return the parameters of the random variable.
Return the standard empirical random variable with zero mean and unit standard deviation.
icdf
(x, *args, **kwargs)Compute the inverse cumulative distribution function (icdf) of the RandomVariable at points x.
icdf_plot
(*args)Plot the inverse cumulative distribution function (icdf) of the random variable.
iso_probabilistic_grid
(n)Return a set of n+1 points (x_0, …, x_{n}) such that the n sets (x0, x_1), [x_1, x_2) .
lhs_random
(n[, p])Latin Hypercube Sampling of the random variable self of n points in dimension p.
likelihood
(x)Compute the log-likelihood of the random variable on sample x.
mass
()Return the mass of the Measure.
max
()Compute the maximum value that can take the inverse cumulative distribution function of the random variable.
mean
()Return the mean of the random variable.
min
()Compute the minimum value that can take the inverse cumulative distribution function of the random variable.
moment
(ind[, nargout])Compute the moments of self of orders contained in ind, defined as E(X^ind[î]).
ndim
()Return the dimension of the random variable, equal to 1.
number_of_parameters
()Compute the number of parameters that admits the random variable.
orthonormal_polynomials
(*args)Return the max_degree-1 first orthonormal polynomials associated with the RandomVariable.
pdf
(x)Compute the probability density function (pdf) of the RandomVariable at points x.
pdf_plot
(*args)Plot the probability density function (pdf) of the random variable.
plot
(quantity[, n_pts, bar])Plot the desired quantity, chosen between ‘pdf’, ‘cdf’ or ‘icdf’.
random
([n])Generate n random numbers according to the distribution of the RandomVariable.
Return the mean and the variance of the random variable.
shift
(b, s)Shift the random variable using the provided bias and scaling factor.
std
()Return the standard deviation of the random variable.
support
()Return the support of the Measure.
transfer
(Y, x)Transfer from the random variable self to the random variable Y at points x.
truncated_support
()Return the truncated support of the random variable.
variance
()Return the variance of the random variable.
random_rejection
-
cdf
(x)¶ Compute the cumulative distribution function (cdf) of the RandomVariable at points x.
- Parameters
- xfloat or list or numpy.ndarray
The points at which the cdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the cdf at points x.
-
get_parameters
()¶ Return the parameters of the random variable.
-
get_standard_random_variable
()¶ Return the standard empirical random variable with zero mean and unit standard deviation.
- Returns
- tensap.EmpiricalRandomVariable
The standard empirical random variable.
-
icdf
(x, *args, **kwargs)¶ Compute the inverse cumulative distribution function (icdf) of the RandomVariable at points x.
- Parameters
- xfloat or list or numpy.ndarray
The points at which the icdf is to be evaluated.
- *args, **kwargstuples
Additional parameters for scipy.optimize’s function brentq.
- Returns
- numpy.ndarray
The evaluations of the icdf at points x.
-
orthonormal_polynomials
(*args)¶ Return the max_degree-1 first orthonormal polynomials associated with the RandomVariable.
- Parameters
- max_degreeint, optional
The maximum degree of the returned polynomials. The default is None, choosing the default maximum degree associated with the constructor of the polynomials.
- Returns
- polytensap.OrthonormalPolynomials
The generated orthonormal polynomials.
-
pdf
(x)¶ Compute the probability density function (pdf) of the RandomVariable at points x.
- Parameters
- xfloat or list or numpy.ndarray
The points at which the pdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the pdf at points x.
-
random
(n=1)¶ Generate n random numbers according to the distribution of the RandomVariable.
- Parameters
- nint
The number of random numbers generated.
- Returns
- numpy.ndarray
The generated numbers.
-
random_variable_statistics
()¶ Return the mean and the variance of the random variable.
- Returns
- float
The mean of the random variable.
- float
The variance of the random variable.
-
shift
(b, s)¶ Shift the random variable using the provided bias and scaling factor.
- Parameters
- biasfloat
The bias.
- scalingfloat
The scaling factor.
- Returns
- tensap.EmpiricalRandomVariable
The shifted random variable.
-
support
()¶ Return the support of the Measure.
- Returns
- None.
-
transfer
(Y, x)¶ Transfer from the random variable self to the random variable Y at points x.
- Parameters
- Ytensap.RandomVariable
The target RandomVariable of the transfer.
- xlist or numpy.ndarray
The input points.
- Returns
- ynumpy.ndarray
The transfered points.
tensap.functions.measures.measure module¶
Module measure.
-
class
tensap.functions.measures.measure.
Measure
¶ Bases:
abc.ABC
Class Measure.
Methods
mass
()Return the mass of the Measure.
ndim
()Return the dimension of the Measure.
support
()Return the support of the Measure.
-
abstract
mass
()¶ Return the mass of the Measure.
- Returns
- None.
-
abstract
ndim
()¶ Return the dimension of the Measure.
- Returns
- None.
-
abstract
support
()¶ Return the support of the Measure.
- Returns
- None.
-
abstract
tensap.functions.measures.normal_random_variable module¶
Module normal_random_variable.
-
class
tensap.functions.measures.normal_random_variable.
NormalRandomVariable
(mean=0, standard_deviation=1)¶ Bases:
tensap.functions.measures.random_variable.RandomVariable
Class NormalRandomVariable.
- Attributes
- momentsnumpy.array
The moments of the normal random variable (if computed).
- mufloat, optional
The mean of the normal random variable. The default is 0.
- sigmafloat, optional
The standard deviation of the normal random variable. The default is 1.
Methods
cdf
(x)Evaluate the cumulative distribution function (cdf) of the normal random variable at points x.
cdf_plot
(*args)Plot the cumulative distribution function (cdf) of the random variable.
discretize
(n)Return a discrete random variable taking n possible values x1, …, xn, these values being the quantiles of self of probability 1/(2n) + i/n, i=0n …, n-1 and such that P(Xn >= xn) = 1/n.
gauss_integration_rule
(nb_pts)Return the nb_pts-points gauss integration rule associated with the measure of self, using Golub-Welsch algorithm.
Return the parameters of the normal random variable.
Return the standard normal random variable with mean 0 and standard deviation 1.
icdf
(x)Evaluate the inverse cumulative distribution function (icdf) of the normal random variable at points x.
icdf_plot
(*args)Plot the inverse cumulative distribution function (icdf) of the random variable.
iso_probabilistic_grid
(n)Return a set of n+1 points (x_0, …, x_{n}) such that the n sets (x0, x_1), [x_1, x_2) .
lhs_random
(n[, p])Latin Hypercube Sampling of the random variable self of n points in dimension p.
likelihood
(x)Compute the log-likelihood of the random variable on sample x.
mass
()Return the mass of the Measure.
max
()Compute the maximum value that can take the inverse cumulative distribution function of the random variable.
mean
()Return the mean of the random variable.
min
()Compute the minimum value that can take the inverse cumulative distribution function of the random variable.
moment
(ind[, nargout])Compute the moments of self of orders contained in ind, defined as E(X^ind[î]).
ndim
()Return the dimension of the random variable, equal to 1.
number_of_parameters
()Compute the number of parameters that admits the random variable.
orthonormal_polynomials
(*max_degree)Return the max_degree-1 first orthonormal polynomials associated with the NormalRandomVariable.
pdf
(x)Evaluate the probability density function (pdf) of the normal random variable at points x.
pdf_plot
(*args)Plot the probability density function (pdf) of the random variable.
plot
(quantity[, n_pts, bar])Plot the desired quantity, chosen between ‘pdf’, ‘cdf’ or ‘icdf’.
random
(n)Generate n random numbers according to the distribution of the RandomVariable.
Return the mean and the variance of the random variable.
shift
(bias, scaling)Shift the normal random variable using the provided bias and scaling factor.
std
()Return the standard deviation of the random variable.
support
()Return the support of the normal random variable.
transfer
(Y, x)Transfer from the random variable self to the random variable Y at points x.
truncated_support
()Return the truncated support of the random variable.
variance
()Return the variance of the random variable.
random_rejection
-
cdf
(x)¶ Evaluate the cumulative distribution function (cdf) of the normal random variable at points x.
- Parameters
- xlist or numpy.ndarray
The points at which the cdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the cdf.
-
get_parameters
()¶ Return the parameters of the normal random variable.
- Returns
- float
The mean of the random variable.
- float
The standard deviation of the random variable.
-
static
get_standard_random_variable
()¶ Return the standard normal random variable with mean 0 and standard deviation 1.
- Returns
- tensap.NormalRandomVariable
The standard normal random variable.
-
icdf
(x)¶ Evaluate the inverse cumulative distribution function (icdf) of the normal random variable at points x.
- Parameters
- xlist or numpy.ndarray
The points at which the icdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the icdf.
-
orthonormal_polynomials
(*max_degree)¶ Return the max_degree-1 first orthonormal polynomials associated with the NormalRandomVariable.
- Parameters
- max_degreeint, optional
The maximum degree of the returned polynomials. The default is None, choosing the default maximum degree associated with the constructor of the polynomials.
- Returns
- polytensap.OrthonormalPolynomials
The generated orthonormal polynomials.
-
pdf
(x)¶ Evaluate the probability density function (pdf) of the normal random variable at points x.
- Parameters
- xlist or numpy.ndarray
The points at which the pdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the pdf.
-
random
(n)¶ Generate n random numbers according to the distribution of the RandomVariable.
- Parameters
- nint
The number of random numbers generated.
- Returns
- numpy.ndarray
The generated numbers.
-
random_variable_statistics
()¶ Return the mean and the variance of the random variable.
- Returns
- float
The mean of the random variable.
- float
The variance of the random variable.
-
shift
(bias, scaling)¶ Shift the normal random variable using the provided bias and scaling factor.
The mean mu of the random variable becomes mu + bias, and its standard deviation sigma becomes sigma * scaling.
- Parameters
- biasfloat
The bias.
- scalingfloat
The scaling factor.
- Returns
- RVtensap.NormalRandomVariable
The shifted normal random variable.
-
static
support
()¶ Return the support of the normal random variable.
- Returns
- numpy.ndarray
Support of the normal random variable.
tensap.functions.measures.probability_measure module¶
Module probability_measure.
-
class
tensap.functions.measures.probability_measure.
ProbabilityMeasure
¶ Bases:
tensap.functions.measures.measure.Measure
Class ProbabilityMeasure.
Methods
mass
()Return the mass of the Measure.
ndim
()Return the dimension of the Measure.
support
()Return the support of the Measure.
random_rejection
-
static
mass
()¶ Return the mass of the Measure.
- Returns
- None.
-
random_rejection
(n, Y, c, m)¶
-
static
tensap.functions.measures.product_measure module¶
Module product_measure.
-
class
tensap.functions.measures.product_measure.
ProductMeasure
(measures)¶ Bases:
tensap.functions.measures.measure.Measure
Class ProductMeasure.
- Attributes
- measureslist or tensap.RandomVector
List of Measure objects.
Methods
duplicate
(measure, dim)Create a ProductMeasure by duplicating dim times the provided measure.
mass
()Return the mass of the Measure.
ndim
()Return the dimension of the Measure.
Return, if self is a ProbabilityMeasure, the associated RandomVector.
support
()Return the support of the Measure.
Return the truncated support of the measures of the ProductMeasure.
marginal
pdf
random
random_sequential
-
static
duplicate
(measure, dim)¶ Create a ProductMeasure by duplicating dim times the provided measure.
- Parameters
- measuretensap.Measure
The measure to be duplicated.
- dimint
The number of times the provided measure is duplicated.
- Returns
- tensap.ProductMeasure
The created ProductMeasure.
-
marginal
(ind)¶
-
mass
()¶ Return the mass of the Measure.
- Returns
- None.
-
ndim
()¶ Return the dimension of the Measure.
- Returns
- None.
-
pdf
(x)¶
-
random
(x)¶
-
random_sequential
(x)¶
-
random_vector
()¶ Return, if self is a ProbabilityMeasure, the associated RandomVector.
- Returns
- tensap.RandomVector
The RandomVector associated with self.
-
support
()¶ Return the support of the Measure.
- Returns
- None.
-
truncated_support
()¶ Return the truncated support of the measures of the ProductMeasure.
- Returns
- list
The truncated support of the measures of the ProductMeasure.
tensap.functions.measures.random_multi_indices module¶
Module random_multi_indices.
-
tensap.functions.measures.random_multi_indices.
random_multi_indices
(shape)¶ Return a random variable uniformly distributed on I1 x … x Id.
If shape contains integers, the intervals are defined as Ij = np.arange(shape[j-1]), j = 1, …, len(shape).
- Parameters
- shapelist or numpy.ndarray
The number of elements of each interval, or the interval themselves.
- Returns
- tensap.RandomVector
The random variable uniformly distributed on I1 x … x Id.
tensap.functions.measures.random_variable module¶
Module random_variable.
-
class
tensap.functions.measures.random_variable.
RandomVariable
¶ Bases:
tensap.functions.measures.probability_measure.ProbabilityMeasure
Class RandomVariable.
- Attributes
- momentsnumpy.array
The moments of the normal random variable (if computed).
Methods
cdf
(x)Compute the cumulative distribution function (cdf) of the RandomVariable at points x.
cdf_plot
(*args)Plot the cumulative distribution function (cdf) of the random variable.
discretize
(n)Return a discrete random variable taking n possible values x1, …, xn, these values being the quantiles of self of probability 1/(2n) + i/n, i=0n …, n-1 and such that P(Xn >= xn) = 1/n.
gauss_integration_rule
(nb_pts)Return the nb_pts-points gauss integration rule associated with the measure of self, using Golub-Welsch algorithm.
Return the parameters of the random variable.
icdf
(x)Compute the inverse cumulative distribution function (icdf) of the RandomVariable at points x.
icdf_plot
(*args)Plot the inverse cumulative distribution function (icdf) of the random variable.
Return a set of n+1 points (x_0, …, x_{n}) such that the n sets (x0, x_1), [x_1, x_2) .
lhs_random
(n[, p])Latin Hypercube Sampling of the random variable self of n points in dimension p.
likelihood
(x)Compute the log-likelihood of the random variable on sample x.
mass
()Return the mass of the Measure.
max
()Compute the maximum value that can take the inverse cumulative distribution function of the random variable.
mean
()Return the mean of the random variable.
min
()Compute the minimum value that can take the inverse cumulative distribution function of the random variable.
moment
(ind[, nargout])Compute the moments of self of orders contained in ind, defined as E(X^ind[î]).
ndim
()Return the dimension of the random variable, equal to 1.
Compute the number of parameters that admits the random variable.
orthonormal_polynomials
(*max_degree)Return the max_degree-1 first orthonormal polynomials associated with the RandomVariable.
pdf
(x)Compute the probability density function (pdf) of the RandomVariable at points x.
pdf_plot
(*args)Plot the probability density function (pdf) of the random variable.
plot
(quantity[, n_pts, bar])Plot the desired quantity, chosen between ‘pdf’, ‘cdf’ or ‘icdf’.
random
(n)Generate n random numbers according to the distribution of the RandomVariable.
Return the mean and the variance of the random variable.
std
()Return the standard deviation of the random variable.
support
()Return the support of the Measure.
transfer
(Y, x)Transfer from the random variable self to the random variable Y at points x.
Return the truncated support of the random variable.
variance
()Return the variance of the random variable.
random_rejection
-
cdf
(x)¶ Compute the cumulative distribution function (cdf) of the RandomVariable at points x.
- Parameters
- xfloat or list or numpy.ndarray
The points at which the cdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the cdf at points x.
-
cdf_plot
(*args)¶ Plot the cumulative distribution function (cdf) of the random variable.
See also plot.
- Parameters
- *argstuple
Additional parameters of the method plot.
- Returns
- None.
-
discretize
(n)¶ Return a discrete random variable taking n possible values x1, …, xn, these values being the quantiles of self of probability 1/(2n) + i/n, i=0n …, n-1 and such that P(Xn >= xn) = 1/n.
- Parameters
- nint
The number of possible values the discrete random variable can take.
- Returns
- tensap.DiscreteRandomVariable
The obtained discrete random variable.
-
gauss_integration_rule
(nb_pts)¶ Return the nb_pts-points gauss integration rule associated with the measure of self, using Golub-Welsch algorithm.
- Parameters
- nb_ptsint
The number of integration points.
- Returns
- tensap.IntegrationRule
The integration rule associated with the measure of self.
-
get_parameters
()¶ Return the parameters of the random variable.
-
icdf
(x)¶ Compute the inverse cumulative distribution function (icdf) of the RandomVariable at points x.
- Parameters
- xfloat or list or numpy.ndarray
The points at which the icdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the icdf at points x.
-
icdf_plot
(*args)¶ Plot the inverse cumulative distribution function (icdf) of the random variable.
See also plot.
- Parameters
- *argstuple
Additional parameters of the method plot.
- Returns
- None.
-
iso_probabilistic_grid
(n)¶ Return a set of n+1 points (x_0, …, x_{n}) such that the n sets (x0, x_1), [x_1, x_2) … [x_{n-1}, x_{n}) have all the same probability p = 1/n (with x0 = self.min() and x_{n+1}=self.max()).
- Parameters
- nint
The number of points of the grid plus one.
- Returns
- numpy.ndarray
The iso-probabilistic grid.
-
lhs_random
(n, p=1)¶ Latin Hypercube Sampling of the random variable self of n points in dimension p.
Requires the package pyDOE.
- Parameters
- nint
Number of points.
- pint, optional
The dimension. The default is 1.
- Returns
- numpy.ndarray
The coordinates of the Latin Hypercube Sampling in each dimension.
-
likelihood
(x)¶ Compute the log-likelihood of the random variable on sample x.
- Parameters
- xlist or numpy.ndarray
The sample used to compute the log-likelihood.
- Returns
- float
The log-likelihood of the random variable on sample x.
-
max
()¶ Compute the maximum value that can take the inverse cumulative distribution function of the random variable.
- Returns
- float
The maximum value that can take the inverse cumulative distribution function of the random variable.
-
mean
()¶ Return the mean of the random variable.
- Returns
- float
The mean of the random variable.
-
min
()¶ Compute the minimum value that can take the inverse cumulative distribution function of the random variable.
- Returns
- float
The minimum value that can take the inverse cumulative distribution function of the random variable.
-
moment
(ind, nargout=1)¶ Compute the moments of self of orders contained in ind, defined as E(X^ind[î]). If a second output argument is asked, the computed moments are stored in the random variable X.
- Parameters
- indlist or numpy.ndarray
The orders of the moments.
- nargoutint, optional
Indicates the number of expected outputs. The default is 1, indicating to return only the moments.
- Returns
- numpy.ndarray
The computed moments.
- tensap.RandomVariable
The RandomVariable object with the computed moments stored in the attribute moments.
-
static
ndim
()¶ Return the dimension of the random variable, equal to 1.
- Returns
- int
The dimension of the random variable.
-
number_of_parameters
()¶ Compute the number of parameters that admits the random variable.
- Returns
- int
The number of parameters that admits the random variable.
-
orthonormal_polynomials
(*max_degree)¶ Return the max_degree-1 first orthonormal polynomials associated with the RandomVariable.
- Parameters
- max_degreeint, optional
The maximum degree of the returned polynomials. The default is None, choosing the default maximum degree associated with the constructor of the polynomials.
- Returns
- polytensap.OrthonormalPolynomials
The generated orthonormal polynomials.
-
pdf
(x)¶ Compute the probability density function (pdf) of the RandomVariable at points x.
- Parameters
- xfloat or list or numpy.ndarray
The points at which the pdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the pdf at points x.
-
pdf_plot
(*args)¶ Plot the probability density function (pdf) of the random variable.
See also plot.
- Parameters
- *argstuple
Additional parameters of the method plot.
- Returns
- None.
-
plot
(quantity, n_pts=100, bar=False, *args)¶ Plot the desired quantity, chosen between ‘pdf’, ‘cdf’ or ‘icdf’.
- Parameters
- quantitystr
The desired quantity, chosen between ‘pdf’, ‘cdf’ or ‘icdf’.
- n_ptsint, optional
The number of points used for the plot. The default is 100.
- barboolean, optional
Determines if the method uses matplotlib.pyplot’s function bar or plot. The default is False.
- *argstuple
Additional parameters for matplotlib.pyplot’s function plot or bar.
- Returns
- None.
- Raises
- ValueError
If the provided argument quantity is wrong.
-
random
(n)¶ Generate n random numbers according to the distribution of the RandomVariable.
- Parameters
- nint
The number of random numbers generated.
- Returns
- numpy.ndarray
The generated numbers.
-
random_variable_statistics
()¶ Return the mean and the variance of the random variable.
- Returns
- float
The mean of the random variable.
- float
The variance of the random variable.
-
std
()¶ Return the standard deviation of the random variable.
- Returns
- float
The standard deviation of the random variable.
-
transfer
(Y, x)¶ Transfer from the random variable self to the random variable Y at points x.
- Parameters
- Ytensap.RandomVariable
The target RandomVariable of the transfer.
- xlist or numpy.ndarray
The input points.
- Returns
- ynumpy.ndarray
The transfered points.
-
truncated_support
()¶ Return the truncated support of the random variable.
- Returns
- supnumpy.ndarray
The truncated support of the random variable.
-
variance
()¶ Return the variance of the random variable.
- Returns
- float
The variance of the random variable.
tensap.functions.measures.random_vector module¶
Module random_vector.
-
class
tensap.functions.measures.random_vector.
RandomVector
(random_variables, order=None, copula=<tensap.functions.measures.copulas.IndependentCopula object>)¶ Bases:
tensap.functions.measures.probability_measure.ProbabilityMeasure
Class RandomVector.
- Attributes
- random_variablesnumpy.ndarray
The RandomVariable objects constituting the random vector.
- copulatensap.Copula
The copula of the random vector.
Methods
cdf
(x)Compute the cumulative distribution function (cdf) at points x, x must have self.ndim() columns.
Return the standard RandomVector associated with self.
Generate a grid of (n[0]-1) x .
lhs_random
(n)Latin Hypercube Sampling of the RandomVector of n points.
mass
()Return the mass of the Measure.
mean
()Return the mean of the random variable.
ndim
()Return the dimension of the Measure.
orthonormal_polynomials
([max_degree])Return the max_degree-1 first orthonormal polynomials associated with the RandomVector.
pdf
(x)Compute the probability density function (pdf) of each RandomVariable in self at points x, x must have self.ndim() columns.
random
([n])Generate n random numbers according to the distribution of the RandomVector.
std
()Return the standard deviation of the random variable.
support
()Return the support of the Measure.
transfer
(Y, x)Transfer from the tensap.RandomVector X to the tensap.RandomVector Y, at points x.
transpose
(perm)Transpose (permute) the components of a random vector.
Return the truncated support of the random vector.
variance
()Return the variance of the random variable.
marginal
random_rejection
-
cdf
(x)¶ Compute the cumulative distribution function (cdf) at points x, x must have self.ndim() columns.
- Parameters
- xlist or numpy.ndarray
The points at which the cdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the cdf at points x.
-
get_standard_random_vector
()¶ Return the standard RandomVector associated with self.
- Returns
- tensap.RandomVector
The standard RandomVector.
-
iso_probabilistic_grid
(n)¶ Generate a grid of (n[0]-1) x … x (n[d-1]-1) points (x_{i_1}^1, …, x_{i_d}^d) such that the N = (n[0] x … x(n[d-1] sets [x_{i_1-1}^1, x_{i_1}^1] x … x [x_{i_d-1}^1, x_{i_d}^1] have the same probability p = 1/N.
- Parameters
- nint
The number of points of the grid plus one in each or all the dimensions.
- Returns
- tensap.FullTensorGrid
The iso-probabilistic grid.
-
lhs_random
(n)¶ Latin Hypercube Sampling of the RandomVector of n points.
Requires the package pyDOE.
- Parameters
- nint
Number of points.
- Returns
- list
List containing the coordinates of the Latin Hypercube Sampling in each dimension.
-
marginal
(ind)¶
-
mean
()¶ Return the mean of the random variable.
- Returns
- float
The mean of the random variable.
-
ndim
()¶ Return the dimension of the Measure.
- Returns
- None.
-
orthonormal_polynomials
(max_degree=None)¶ Return the max_degree-1 first orthonormal polynomials associated with the RandomVector.
- Parameters
- max_degreeint, optional
The maximum degree of the returned polynomials. The default is None, choosing the default maximum degree associated with the constructor of the polynomials.
- Returns
- polytensap.OrthonormalPolynomials
The generated orthonormal polynomials.
-
pdf
(x)¶ Compute the probability density function (pdf) of each RandomVariable in self at points x, x must have self.ndim() columns.
- Parameters
- xlist or numpy.ndarray
The points at which the pdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the pdf at points x.
-
random
(n=1)¶ Generate n random numbers according to the distribution of the RandomVector.
- Parameters
- nint
The number of random numbers generated.
- Returns
- numpy.ndarray
The generated numbers.
-
property
size
¶ Return the number of random variables constituting the RandomVector.
- Returns
- int
The number of random variables constituting the RandomVector.
-
std
()¶ Return the standard deviation of the random variable.
- Returns
- float
The standard deviation of the random variable.
-
support
()¶ Return the support of the Measure.
- Returns
- None.
-
transfer
(Y, x)¶ Transfer from the tensap.RandomVector X to the tensap.RandomVector Y, at points x.
- Parameters
- Ytensap.RandomVector
The target RandomVector of the transfer.
- xlist or numpy.ndarray
The input points.
- Returns
- ynumpy.ndarray
The transfered points.
-
transpose
(perm)¶ Transpose (permute) the components of a random vector.
- Parameters
- permlist or numpy.array
The permutation indices.
- Returns
- tensap.RandomVector
The random vector with transposed (permuted) components.
-
truncated_support
()¶ Return the truncated support of the random vector.
- Returns
- supnumpy.ndarray
The truncated support of the random vector.
- Raises
- NotImplementedError
If the copula is not an IndependentCopula.
-
variance
()¶ Return the variance of the random variable.
- Returns
- float
The variance of the random variable.
tensap.functions.measures.uniform_random_variable module¶
Module uniform_random_variable.
-
class
tensap.functions.measures.uniform_random_variable.
UniformRandomVariable
(inf=- 1, sup=1)¶ Bases:
tensap.functions.measures.random_variable.RandomVariable
Class UniformRandomVariable.
- Attributes
- momentsnumpy.array
The moments of the uniform random variable (if computed).
- inffloat, optional
The lower bound of the support of the random variable. The default is -1.
- supfloat, optional
The upper bound of the support of the random variable. The default is 1.
Methods
cdf
(x)Evaluate the cumulative distribution function (cdf) of the uniform random variable at points x.
cdf_plot
(*args)Plot the cumulative distribution function (cdf) of the random variable.
discretize
(n)Return a discrete random variable taking n possible values x1, …, xn, these values being the quantiles of self of probability 1/(2n) + i/n, i=0n …, n-1 and such that P(Xn >= xn) = 1/n.
gauss_integration_rule
(nb_pts)Return the nb_pts-points gauss integration rule associated with the measure of self, using Golub-Welsch algorithm.
Return the parameters of the uniform random variable.
Return the standard uniform random variable on [-1, 1].
icdf
(x)Evaluate the inverse cumulative distribution function (icdf) of the uniform random variable at points x.
icdf_plot
(*args)Plot the inverse cumulative distribution function (icdf) of the random variable.
iso_probabilistic_grid
(n)Return a set of n+1 points (x_0, …, x_{n}) such that the n sets (x0, x_1), [x_1, x_2) .
lhs_random
(n[, p])Latin Hypercube Sampling of the random variable self of n points in dimension p.
likelihood
(x)Compute the log-likelihood of the random variable on sample x.
mass
()Return the mass of the Measure.
max
()Compute the maximum value that can take the inverse cumulative distribution function of the random variable.
mean
()Return the mean of the random variable.
min
()Compute the minimum value that can take the inverse cumulative distribution function of the random variable.
moment
(ind[, nargout])Compute the moments of self of orders contained in ind, defined as E(X^ind[î]).
ndim
()Return the dimension of the random variable, equal to 1.
number_of_parameters
()Compute the number of parameters that admits the random variable.
orthonormal_polynomials
(*max_degree)Return the max_degree-1 first orthonormal polynomials associated with the UniformRandomVariable.
pdf
(x)Evaluate the probability density function (pdf) of the uniform random variable at points x.
pdf_plot
(*args)Plot the probability density function (pdf) of the random variable.
plot
(quantity[, n_pts, bar])Plot the desired quantity, chosen between ‘pdf’, ‘cdf’ or ‘icdf’.
random
([n])Generate n random numbers according to the distribution of the RandomVariable.
Return the mean and the variance of the random variable.
shift
(bias, scaling)Shift the uniform random variable using the provided bias and scaling factor.
std
()Return the standard deviation of the random variable.
support
()Return the support of the uniform random variable.
transfer
(Y, x)Transfer from the random variable self to the random variable Y at points x.
truncated_support
()Return the truncated support of the random variable.
variance
()Return the variance of the random variable.
random_rejection
-
cdf
(x)¶ Evaluate the cumulative distribution function (cdf) of the uniform random variable at points x.
- Parameters
- xlist or numpy.ndarray
The points at which the cdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the cdf.
-
get_parameters
()¶ Return the parameters of the uniform random variable.
- Returns
- float
The lower bound of the support of the random variable.
- float
The upper bound of the support of the random variable.
-
static
get_standard_random_variable
()¶ Return the standard uniform random variable on [-1, 1].
- Returns
- tensap.UniformRandomVariable
The standard uniform random variable.
-
icdf
(x)¶ Evaluate the inverse cumulative distribution function (icdf) of the uniform random variable at points x.
- Parameters
- xlist or numpy.ndarray
The points at which the icdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the icdf.
-
orthonormal_polynomials
(*max_degree)¶ Return the max_degree-1 first orthonormal polynomials associated with the UniformRandomVariable.
- Parameters
- max_degreeint, optional
The maximum degree of the returned polynomials. The default is None, choosing the default maximum degree associated with the constructor of the polynomials.
- Returns
- polytensap.OrthonormalPolynomials
The generated orthonormal polynomials.
-
pdf
(x)¶ Evaluate the probability density function (pdf) of the uniform random variable at points x.
- Parameters
- xlist or numpy.ndarray
The points at which the pdf is to be evaluated.
- Returns
- numpy.ndarray
The evaluations of the pdf.
-
random
(n=1)¶ Generate n random numbers according to the distribution of the RandomVariable.
- Parameters
- nint
The number of random numbers generated.
- Returns
- numpy.ndarray
The generated numbers.
-
random_variable_statistics
()¶ Return the mean and the variance of the random variable.
- Returns
- float
The mean of the random variable.
- float
The variance of the random variable.
-
shift
(bias, scaling)¶ Shift the uniform random variable using the provided bias and scaling factor.
The lower bound inf becomes scaling*inf + bias, and the upper bound sup becomes scaling*sup + bias.
- Parameters
- biasfloat
The bias.
- scalingfloat
The scaling factor.
- Returns
- shifted_rvtensap.UniformRandomVariable
The shifted uniform random variable.
-
support
()¶ Return the support of the uniform random variable.
- Returns
- numpy.ndarray
Support of the uniform random variable.
-
tensap.functions.measures.uniform_random_variable.
rand
(d0, d1, ..., dn)¶ Random values in a given shape.
Note
This is a convenience function for users porting code from Matlab, and wraps random_sample. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like numpy.zeros and numpy.ones.
Create an array of the given shape and populate it with random samples from a uniform distribution over
[0, 1)
.- Parameters
- d0, d1, …, dnint, optional
The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned.
- Returns
- outndarray, shape
(d0, d1, ..., dn)
Random values.
- outndarray, shape
See also
random
Examples
>>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random